首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
二轮专题
>
三年模拟一年创新2022届高考数学复习第四章第三节y=Asinωx+φ的图象和性质及其综合应用理全国通用
三年模拟一年创新2022届高考数学复习第四章第三节y=Asinωx+φ的图象和性质及其综合应用理全国通用
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/8
2
/8
剩余6页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
A组 专项基础测试三年模拟精选一、选择题1.(2022·广东汕头模拟)函数y=cos图象的两条相邻对称轴间的距离为( )A.B.C.D.π解析 函数的周期为T==,两条相邻对称轴间的距离为半个周期,即.答案 B2.(2022·辽宁丹东模拟)设函数f(x)=sin-cos,且其图象关于y轴对称,则函数y=f(x)的一个单调递减区间是( )A.B.C.D.解析 因为f(x)=sin-cos=2sin的图象关于y轴对称,所以θ=-,所以f(x)=-2cosx在递减,故选C.答案 C3.(2022·河北正定模拟)设函数f(x)=2sin(ωx+φ)的图象关于直线x=对称,它的周期为π,则( )A.f(x)的图象过点B.f(x)在上是减函数C.f(x)的一个对称中心是D.将f(x)的图象向右平移|φ|个单位得到y=2sinωx的图象解析 因为设函数f(x)=2sin(ωx+φ)(ω>0,-<φ<)的图象关于直线x=对称,它的周期为π,所以φ=,ω=2,所以f(x)=2sin(2x+)(ω>0,-<φ<),8\n因为f=0,所以f(x)的一个对称中心是,故选C.答案 C4.(2022·湖北黄冈调考)已知函数f(x)=2sin(x+φ)的部分图象如图所示,则f的值为( )A.-2B.2C.-D.解析 由题意得f=2sin=2,+φ=2kπ+,φ=2kπ+-=2kπ-,其中k∈Z.因此f=2sin=2sin=2sin=2,选B.答案 B5.(2022·广东汕头4月模拟)函数f(x)=Asin(ωx+φ)的图象如图所示,为了得到g(x)=cos2x的图象,则只要将f(x)的图象( )A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度解析 由图象知=-=,T=π,ω=2,A=1.当x=时,2x+φ=+2kπ(k∈Z),得φ=+2kπ(k∈Z),∵|φ|<,∴φ=.f(x)=sing(x)=cos2x,故选D.答案 D二、填空题6.(2022·山东烟台模拟)已知函数f(x)=Acos2(ωx+φ)+18\n的最大值为3,f(x)的图象与y轴交点坐标为(0,2),其相邻的两条对称轴的距离为2,则f(1)+f(2)+…+f(2015)=________.解析 函数f(x)=Acos2(ωx+φ)+1(A>0,ω>0,0<φ<)的最大值为3,所以A=2,其相邻的两条对称轴的距离为2,所以ω=,所以f(x)=2cos2+1=cos+2(A>0,ω>0,0<φ<),又f(x)的图象与y轴交点坐标为(0,2),所以φ=,f(x)=-sinx+2,而f(1)+f(2)+f(3)+f(4)=8,且周期为4,所以f(1)+f(2)+…+f(2015)=503×8+f(1)+f(2)+f(3)=4030.答案 40307.(2022·河南南阳一模)已知函数f(x)=sin(ωx+φ)的图象上的两个相邻的最高点和最低点的距离为2,且过点,则函数解析式f(x)=________.解析 据已知两个相邻最高及最低点距离为2,可得=2,解得T=4,故ω==,即f(x)=sin,又函数图象过点,故f(2)=sin(π+φ)=-sinφ=-,又-≤φ≤,解得φ=,故f(x)=sin.答案 sin8.(2022·广东珠海质检)某城市一年中12个月的平均气温与月份的关系可近似地用三角函数y=a+Acos(x=1,2,3,…,12,A>0)来表示,已知6月份的月平均气温最高,为28℃,12月份的月平均气温最低,为18℃,则10月份的平均气温值为________℃.解析 由题意得∴∴y=23+5cos,x=10时,y=23+5×=20.5.答案 20.58\n一年创新演练9.设函数f(x)=cos(ωx+φ)-sin(ωx+φ)(ω>0,|φ|<),且其图象相邻的两条对称轴为x1=0,x2=,则( )A.y=f(x)的最小正周期为π,且在上为增函数B.y=f(x)的最小正周期为π,且在上为减函数C.y=f(x)的最小正周期为2π,且在(0,π)上为增函数D.y=f(x)的最小正周期为2π,且在(0,π)上为减函数解析 由已知条件得f(x)=2cos,由题意得=,∴T=π,∵T=,∴ω=2.又∵f(0)=2cos,x=0为f(x)图象的对称轴,∴f(0)=2或-2,又∵|φ|<,∴φ=-,此时f(x)=2cos2x,它在上为减函数,故选B.答案 BB组 专项提升测试三年模拟精选一、选择题10.(2022·河北衡水中学模拟)若函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<)在一个周期内的图象如图所示,M,N分别是这段图象的最高点与最低点,且·=0,则A·ω=( )A.B.C.πD.π解析 由题中图象知=-,∴T=π,∴ω=2.则M,N,由·=0,得=A2,∴A=π,∴A·ω=π.故选C.答案 C11.(2022·温州模拟)定义行列式运算)=a1a4-a2a3.将函数f(x)=的图象向左平移n(n>0)个单位,所得图象对应的函数为偶函数,则n的最小值为( )8\nA.B.C.D.解析 依题意可得f(x)==cosx-sinx=2cos,图象向左平移n(n>0)个单位得f(x+n)=2cos,要使平移后的函数为偶函数,则n的最小值为,故选C.答案 C二、填空题12.(2022·金丽衢十二校联考)已知我省某海滨浴场的海浪高度y(米)是时间t(0≤t≤24,单位:小时)的函数,记作y=f(t),下表是某日各时的浪高数据:t(时)03691215182124y(米)1.51.00.51.01.51.00.50.991.5经长期观测,y=f(t)的曲线可近似地看成是函数y=Acosωt+b的图象.根据以上数据,你认为一日(持续24小时)内,该海滨浴场的海浪高度超过1.25米的时长为________小时.解析 依题意得A=0.5,b=1,ω=,所以y=0.5cost+1.令y=0.5cost+1>1.25(t∈[0,24])得cost>.又t∈[0,24],t∈[0,4π],因此0≤t<或<t≤2π或2π≤t<2π+或2π+<t≤2π+2π,即0≤t<2或10<t≤12或12≤t<14或22<t≤24,在一日内,海滨浴场的海浪高度超过1.25米的时间为8小时.答案 8三、解答题13(2022·皖南八校三模)已知直线y=2与函数f(x)=2sin2ωx+2sinωxcosωx-1(ω>0)的图象的两相邻交点之间的距离为π.(1)求f(x)的解析式,并求出f(x)的单调递增区间;(2)将函数f(x)的图象向左平移个单位得到函数g(x)的图象,求函数g(x)的最大值及g(x)取得最大值时x的取值集合.解 (1)f(x)=2sin2ωx+2sinωxcosωx-1=8\n1-cos2ωx+sin2ωx-1=2sin.由题意可知函数的周期T==π,即ω=1,所以f(x)=2sin.令2kπ-≤2x-≤2kπ+,其中k∈Z,解得kπ-≤x≤kπ+,其中k∈Z,即f(x)的单调递增区间为,k∈Z.(2)g(x)=f=2sin=2sin,则g(x)的最大值为2,此时有2sin=2,即sin=1,即2x+=2kπ+,其中k∈Z.解得x=kπ+(k∈Z),所以当g(x)取得最大值时x的取值集合为.14.(2022·山东潍坊一模)已知函数f(x)=sin·cos+sin2(ω>0,0<φ<),其图象的两个相邻对称中心的距离为,且过点.(1)求函数f(x)的表达式;(2)在△ABC中,a,b,c分别是角A,B,C的对边,a=,S△ABC=2,角C为锐角,且满足f=,求边c的值.解 (1)f(x)=sin(ωx+φ)+=sin+.∵两个相邻对称中心的距离为,∴T=π.由=π,ω>0,得ω=2.又f(x)过点,∴sin+=1,得cosφ=.又∵0<φ<,∴φ=.∴f(x)=sin+.(2)∵f=,得:sinC+=,∴sinC=.∵角C为锐角,∴cosC=.8\n又∵a=,S△ABC=absinC=··b·=2,∴b=6.由余弦定理:c2=a2+b2-2abcosC=5+36-2··6·=21,∴c=.一年创新演练15.如图是某市在城市改造中沿市内主干道季华路修建的圆形休闲广场,圆心为O,半径为100m.其与季华路一边所在直线l相切于点M,A为上半圆弧上一点,过点A作l的垂线,垂足为B.市园林局计划在△ABM内进行绿化.设△ABM的面积为S(单位:m2).(1)以∠AON=θrad为参数,将S表示成θ的函数;(2)试确定当绿化的面积最大时点A的位置及其最大面积.解 (1)如题图,BM=AOsinθ=100sinθ,AB=MO+AOcosθ=100+100cosθ,θ∈(0,π).则S=MB·AB=×100sinθ×(100+100cosθ)=5000(sinθ+sinθcosθ),θ∈(0,π).(2)S′=5000(2cos2θ+cosθ-1)=5000(2cosθ-1)(cosθ+1).令S′=0,得cosθ=或cosθ=-1(舍去),此时θ=.当θ变化时,S′,S的变化情况如下表:θS′+0-S极大值所以,当θ=时,S取得最大值Smax=3750m2,此时AB=150m,即点A到季华路一边的距离为150m.8\n16.某同学用“五点法”画函数f(x)=Asin(ωx+φ)在某一个周期的图象时,列表并填入的部分数据如下表:xx1x2x3ωx+φ0π2πAsin(ωx+φ)020-20(1)求x1,x2,x3的值及函数f(x)的表达式;(2)将函数f(x)的图象向左平移π个单位,可得到函数g(x)的图象,求函数y=f(x)·g(x)在区间的最小值.解 (1)由ω+φ=0,ω+φ=π可得:ω=,φ=-.由x1-=;x2-=;x3-=2π可得:x1=,x2=,x3=.又∵Asin=2,∴A=2.∴f(x)=2sin.(2)由f(x)=2sin的图象向左平移π个单位,得g(x)=2sin=2cos的图象,∴y=f(x)·g(x)=2×2sin·cos=2sin,∵x∈时,x-∈,∴当x-=-时,即x=时,ymin=-2.8
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
2023版新高考数学一轮总复习第4章第5讲函数y=Asinωx+φ的图象及应用课件
【红对勾】(新课标)2023高考数学大一轮复习 3.5函数y=Asin(ωx+φ)的图象及应用课时作业 理.DOC
福建专用2022高考数学一轮复习课时规范练20函数y=Asinωx+φ的图象及应用理新人教A版
福建专版2022高考数学一轮复习课时规范练19函数y=Asinωx+φ的图象及应用文
五年高考真题2022届高考数学复习第四章第三节y=Asinωx+φ的图象和性质及其综合应用理全国通用
三年模拟一年创新2022届高考数学复习第四章第二节三角函数的图象与性质理全国通用
【创新设计】2022届高考数学一轮总复习 第四篇 第4讲 函数y=Asin(ωx+φ)的图象性质及应用 理 湘教版
文档下载
收藏
所属:
高考 - 二轮专题
发布时间:2022-08-26 00:01:19
页数:8
价格:¥3
大小:130.35 KB
文章作者:U-336598
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划