首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
历年真题
>
五年高考真题2022届高考数学复习第四章第三节y=Asinωx+φ的图象和性质及其综合应用理全国通用
五年高考真题2022届高考数学复习第四章第三节y=Asinωx+φ的图象和性质及其综合应用理全国通用
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/7
2
/7
剩余5页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
考点一 求三角函数的解析式1.(2022·陕西,3)如图,某港口一天6时到18时的水深变化曲线近似满足函数y=3sin+k,据此函数可知,这段时间水深(单位:m)的最大值为( )A.5B.6C.8D.10解析 由题干图易得ymin=k-3=2,则k=5.∴ymax=k+3=8.答案 C2.(2022·新课标全国Ⅰ,8)函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为( )A.,k∈ZB.,k∈ZC.,k∈ZD.,k∈Z解析 由图象知=-=1,∴T=2.由选项知D正确.答案 D3.(2022·湖南,17)已知函数f(x)=sin+cos,g(x)=2sin2.(1)若α是第一象限角,且f(α)=,求g(α)的值;(2)求使f(x)≥g(x)成立的x的取值集合.解 f(x)=sin+cos=sinx-cosx+cosx+sinx=sinx,g(x)=2sin2=1-cosx.(1)由f(α)=得sinα=.7\n又α是第一象限角,所以cosα>0.从而g(α)=1-cosα=1-=1-=.(2)f(x)≥g(x)等价于sinx≥1-cosx,即sinx+cosx≥1.于是sin≥.从而2kπ+≤x+≤2kπ+,k∈Z,即2kπ≤x≤2kπ+,k∈Z.故使f(x)≥g(x)成立的x的取值集合为{x|2kπ≤x≤2kπ+,k∈Z}.4.(2022·四川,18)函数f(x)=6cos2+sinωx-3(ω>0)在一个周期内的图象如图所示,A为图象的最高点,B,C为图象与x轴的交点,且△ABC为正三角形.(1)求ω的值及函数f(x)的值域;(2)若f(x0)=,且x0∈,求f(x0+1)的值.解 (1)由已知可得,f(x)=3cosωx+sinωx=2sin.又正三角形ABC的高为2,从而BC=4.所以函数f(x)的周期T=4×2=8,即=8,ω=.函数f(x)的值域为[-2,2].(2)因为f(x0)=,由(1)有f(x0)=2sin=,即sin=.由x0∈,知+∈,7\n所以cos==.故f(x0+1)=2sin=2sin=2=2=.5.(2022·湖北,17)某同学用“五点法”画函数f(x)=Asin(ωx+φ)在某一个周期内的图象时,列表并填入了部分数据,如下表:ωx+φ0π2πxAsin(ωx+φ)05-50(1)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数f(x)的解析式;(2)将y=f(x)图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g(x)的图象.若y=g(x)图象的一个对称中心为,求θ的最小值.解 (1)根据表中已知数据,解得A=5,ω=2,φ=-.数据补全如下表:ωx+φ0π2πxπAsin(ωx+φ)050-50且函数表达式为f(x)=5sin.(2)由(1)知f(x)=5sin,得g(x)=5sin.因为y=sinx的对称中心为(kπ,0),k∈Z.7\n令2x+2θ-=kπ,解得x=+-θ,k∈Z.由于函数y=g(x)的图象关于点成中心对称,令+-θ=,解得θ=-,k∈Z.由θ>0可知,当k=1时,θ取得最小值.6.(2022·福建,16)已知等比数列{an}的公比q=3,前3项和S3=.(1)求数列{an}的通项公式;(2)若函数f(x)=Asin(2x+φ)(A>0,0<φ<π)在x=处取得最大值,且最大值为a3,求函数f(x)的解析式.解 (1)由q=3,S3=,得=,解得a1=.所以an=×3n-1=3n-2.(2)由(1)可知an=3n-2,所以a3=3.因为函数f(x)的最大值为3,所以A=3.因为当x=时f(x)取得最大值,所以sin=1.又0<φ<π,故φ=.所以函数f(x)的解析式为f(x)=3sin.考点二 函数y=Asin(ωx+φ)的综合应用1.(2022·安徽,10)已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f(x)取得最小值,则下列结论正确的是( )A.f(2)<f(-2)<f(0)B.f(0)<f(2)<f(-2)C.f(-2)<f(0)<f(2)D.f(2)<f(0)<f(-2)解析 由于f(x)的最小正周期为π,∴ω=2,即f(x)=Asin(2x+φ),又当x=时,2x+φ=+φ=2kπ-,∴φ=2kπ-,又φ>0,∴φmin=,故f(x)=Asin.于是f(0)=A,f(2)=Asin,f(-2)=Asin=Asin,又∵-<-4<<4-<,7\n其中f(2)=Asin=Asin=Asin,f(-2)=Asin=Asin=Asin.又f(x)在单调递增,∴f(2)<f(-2)<f(0),故选A.答案 A2.(2022·山东,16)如图,在平面直角坐标系xOy中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P的位置在(0,0),圆在x轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,的坐标为________.解析 因为圆心由(0,1)平移到了(2,1),所以在此过程中P点所经过的弧长为2,其所对圆心角为2.如图所示,过P点作x轴的垂线,垂足为A,圆心为C,与x轴相切于点B,过C作PA的垂线,垂足为D,则∠PCD=2-,|PD|=sin=-cos2,|CD|=cos=sin2,所以P点坐标为(2-sin2,1-cos2),即的坐标为(2-sin2,1-cos2).答案 (2-sin2,1-cos2)3.(2022·湖北,17)某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系:f(t)=10-cost-sint,t∈[0,24).(1)求实验室这一天的最大温差;(2)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?7\n解 (1)因为f(t)=10-2=10-2sin,又0≤t<24,所以≤t+<,-1≤sin≤1.当t=2时,sin=1;当t=14时,sin=-1.于是f(t)在[0,24)上取得最大值12,取得最小值8.故实验室这一天最高温度为12℃,最低温度为8℃,最大温差为4℃.(2)依题意,当f(t)>11时实验室需要降温.由(1)得f(t)=10-2sin,故有10-2sin>11,即sin<-.又0≤t<24,因此<t+<,即10<t<18.故在10时至18时实验室需要降温.4.(2022·天津,15)已知函数f(x)=sin2x-sin2,x∈R.(1)求f(x)的最小正周期;(2)求f(x)在区间上的最大值和最小值.解 (1)由已知,有f(x)=-=-cos2x=sin2x-cos2x=sin.7\n所以f(x)的最小正周期T==π.(2)因为f(x)在区间上是减函数,在区间上是增函数,f=-,f=-,f=,所以f(x)在区间上的最大值为,最小值为-.5.(2022·安徽,16)设函数f(x)=cos+sin2x.(1)求f(x)的最小正周期;(2)设函数g(x)对任意x∈R,有g=g(x),且当x∈时,g(x)=-f(x),求g(x)在区间[-π,0]上的解析式.解 (1)f(x)=cos+sin2x=+=-sin2x,故f(x)的最小正周期为π.(2)当x∈时,g(x)=-f(x)=sin2x,故①当x∈时,x+∈.由于对任意x∈R,g=g(x),从而g(x)=g=sin=sin(π+2x)=-sin2x.②当x∈时,x+π∈.从而g(x)=g(x+π)=sin[2(x+π)]=sin2x.综合①,②得g(x)在[-π,0]上的解析式为g(x)=7
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
2023版新高考数学一轮总复习第4章第5讲函数y=Asinωx+φ的图象及应用课件
【红对勾】(新课标)2023高考数学大一轮复习 3.5函数y=Asin(ωx+φ)的图象及应用课时作业 理.DOC
福建专用2022高考数学一轮复习课时规范练20函数y=Asinωx+φ的图象及应用理新人教A版
福建专版2022高考数学一轮复习课时规范练19函数y=Asinωx+φ的图象及应用文
五年高考真题2022届高考数学复习第四章第二节三角函数的图象与性质理全国通用
三年模拟一年创新2022届高考数学复习第四章第三节y=Asinωx+φ的图象和性质及其综合应用理全国通用
【创新设计】2022届高考数学一轮总复习 第四篇 第4讲 函数y=Asin(ωx+φ)的图象性质及应用 理 湘教版
文档下载
收藏
所属:
高考 - 历年真题
发布时间:2022-08-25 23:58:56
页数:7
价格:¥3
大小:120.50 KB
文章作者:U-336598
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划