首页

江苏专用2022高考数学二轮复习专题七第3讲坐标系与参数方程提升训练理选做部分

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/3

2/3

剩余1页未读,查看更多内容需下载

第3讲 坐标系与参数方程1.(2022·江苏卷)在平面直角坐标系xOy中,直线l的参数方程为(t为参数),曲线C的参数方程为(θ为参数).试求直线l和曲线C的普通方程,并求出它们的公共点的坐标.解 因为直线l的参数方程为(t为参数),由x=t+1得t=x-1,代入y=2t,得到直线l的普通方程为2x-y-2=0.同理得到曲线C的普通方程为y2=2x.联立方程组解得公共点的坐标为(2,2),.2.(2022·江苏卷)在平面直角坐标系xOy中,求过椭圆(φ为参数)的右焦点,且与直线(t为参数)平行的直线的普通方程.解 由题意知,椭圆的长半轴长为a=5,短半轴长b=3,从而c=4,所以右焦点为(4,0),将已知直线的参数方程化为普通方程得x-2y+2=0,故所求的直线的斜率为,因此所求的方程为y=(x-4),即x-2y-4=0.3.(2022·江苏卷)在极坐标系中,已知圆ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0相切,求实数a的值.解 将极坐标方程化为直角坐标方程,得圆的方程为x2+y2=2x,即(x-1)2+y2=1,直线的方程为3x+4y+a=0.由题设知,圆心(1,0)到直线的距离为1,即有=1,解得a=-8或a=2,故a的值为-8或2.4.在平面直角坐标系xOy中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的参数方程为(t为参数),曲线C的极坐标方程为ρ=2cosθ.3\n(1)求直线l和曲线C的直角坐标方程;(2)求曲线C上的点到直线l的距离的最值.解 (1)化为直角坐标方程得,直线l:x-y-2=0,曲线C:(x-1)2+y2=1.(2)由(1)可知,曲线C是圆心为C(1,0),半径r=1的圆.且圆心C(1,0)到直线l的距离d==<r=1,故直线l与曲线C相交.所以曲线C上的点到直线l的距离的最大值为d+r=,最小值为0.5.(2022·全国Ⅱ卷)在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α<π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,曲线C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.解 (1)曲线C2的直角坐标方程为x2+y2-2y=0,曲线C3的直角坐标方程为x2+y2-2x=0.联立解得或所以C2与C3交点的直角坐标为(0,0)和.(2)曲线C1的极坐标方程为θ=α(ρ∈R,ρ≠0),其中0≤α<π.因此A的极坐标为(2sinα,α),B的极坐标为(2cosα,α).所以|AB|=|2sinα-2cosα|=4.当α=时,|AB|取得最大值,最大值为4.6.(2022·湖南卷)已知直线l:(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2cosθ.(1)将曲线C的极坐标方程化为直角坐标方程;3\n(2)设点M的直角坐标为(5,),直线l与曲线C的交点为A,B,求|MA|·|MB|的值.解 (1)ρ=2cosθ等价于ρ2=2ρcosθ.①将ρ2=x2+y2,ρcosθ=x代入①即得曲线C的直角坐标方程为x2+y2-2x=0.②(2)将(t为参数)代入②式,得t2+5t+18=0.设这个方程的两个实根分别为t1,t2,则由参数t的几何意义即知,|MA|·|MB|=|t1t2|=18.3

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 23:25:02 页数:3
价格:¥3 大小:15.11 KB
文章作者:U-336598

推荐特供

MORE