首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
二轮专题
>
浙江专用2022高考数学二轮复习专题5.1直线与圆精练理
浙江专用2022高考数学二轮复习专题5.1直线与圆精练理
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/6
2
/6
剩余4页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
专题五解析几何第1讲 直线与圆(建议用时:60分钟)一、选择题1.(2022·广东卷)平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是( ).A.2x-y+=0或2x-y-=0B.2x+y+=0或2x+y-=0C.2x-y+5=0或2x-y-5=0D.2x+y+5=0或2x+y-5=0解析 设所求切线方程为2x+y+c=0,依题有=,解得c=±5,所以所求切线的直线方程为2x+y+5=0或2x+y-5=0,故选D.答案 D2.“a=b”是“直线y=x+2与圆(x-a)2+(x-b)2=2相切”的( ).A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析 由直线与圆相切,得=,即|a-b+2|=2,所以由a=b可推出|a-b+2|=2,即直线与圆相切,充分性成立;反之|a-b+2|=2,解得a=b或a-b=-4,必要性不成立.答案 A3.(2022·浙江卷)已知圆x2+y2+2x-2y+a=0截直线x+y+2=0所得弦的长度为4,则实数a的值是( ).A.-2B.-4C.-6D.-8解析 由圆的方程x2+y2+2x-2y+a=0可得,圆心为(-1,1),半径r=.圆心到直线x+y+2=0的距离d==.由r2=d2+2得2-a=2+4,所以a=-4.答案 B4.已知圆的方程为x2+y2-6x-8y=0,设该圆中过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积是6\n( ).A.10B.20C.30D.40解析 配方可得(x-3)2+(y-4)2=25,其圆心为(3,4),半径为r=5,则过点(3,5)的最长弦AC=2r=10,最短弦BD=2=4,且有AC⊥BD,则四边形ABCD的面积为S=AC×BD=20.答案 B5.(2022·金华质检)已知圆(x-a)2+(y-b)2=r2的圆心为抛物线y2=4x的焦点,且与直线3x+4y+2=0相切,则该圆的方程为( ).A.(x-1)2+y2=B.x2+(y-1)2=C.(x-1)2+y2=1D.x2+(y-1)2=1解析 因为抛物线y2=4x的焦点坐标为(1,0),所以a=1,b=0.又根据=1=r,所以圆的方程为(x-1)2+y2=1.答案 C6.已知圆C1:(x-2)2+(y-3)2=1,圆C2:(x-3)2+(y-4)2=9,M,N分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值为( ).A.5-4B.-1C.6-2D.解析 两圆心坐标分别为C1(2,3),C2(3,4).C1关于x轴对称的点C1′的坐标为(2,-3),连接C2C1′,线段C2C1′与x轴的交点即为P点.(|PM|+|PN|)min=|C2C1′|-R1-R2=-1-3=-4=5-4(R1,R2分别为两圆的半径).故选A.答案 A7.(2022·山东卷)一条光线从点(-2,-3)射出,经y轴反射后与圆(x+3)2+(y-2)2=1相切,则反射光线所在直线的斜率为( ).6\nA.-或-B.-或-C.-或-D.-或-解析 圆(x+3)2+(y-2)2=1的圆心为(-3,2),半径r=1.(-2,-3)关于y轴的对称点为(2,-3).如图所示,反射光线一定过点(2,-3)且斜率k存在,∴反射光线所在直线方程为y+3=k(x-2),即kx-y-2k-3=0.∵反射光线与已知圆相切,∴=1,整理得12k2+25k+12=0,解得k=-或k=-.答案 D二、填空题8.(2022·湖北卷)直线l1:y=x+a和l2:y=x+b将单位圆C:x2+y2=1分成长度相等的四段弧,则a2+b2=__________.解析 依题意,不妨设直线y=x+a与单位圆相交于A,B两点,则∠AOB=90°.如图,此时a=1,b=-1,满足题意,所以a2+b2=2.答案 29.若直线ax+by=1过点A(b,a),则以坐标原点O为圆心,OA长为半径的圆的面积的最小值是________.解析 由题意知,ab=,半径r=≥=1,故面积的最小值为π.答案 π10.(2022·重庆卷)已知直线ax+y-2=0与圆心为C的圆(x-1)2+(y-a)2=4相交于A,6\nB两点,且△ABC为等边三角形,则实数a=________.解析 圆心C(1,a)到直线ax+y-2=0的距离为.因为△ABC为等边三角形,所以|AB|=|BC|=2,所以2+12=22,解得a=4±.答案 4±11.(2022·新课标全国Ⅱ卷改编)过三点A(1,3),B(4,2),C(1,-7)的圆交y轴于M、N两点,则|MN|=________.解析 由已知,得=(3,-1),=(-3,-9),则·=3×(-3)+(-1)×(-9)=0,所以⊥,即AB⊥BC,故过三点A、B、C的圆以AC为直径,得其方程为(x-1)2+(y+2)2=25,令x=0得(y+2)2=24,解得y1=-2-2,y2=-2+2,所以|MN|=|y1-y2|=4.答案 412.(2022·绍兴检测)若直线l:4x+3y-8=0过圆C:x2+y2-ax=0的圆心且交圆C于A,B两点,O坐标原点,则△OAB的面积为________.解析 由题意知,圆C:x2+y2-ax=0的圆心为.又直线l:4x+3y-8=0过圆C的圆心,∴4×+3×0-8=0.∴a=4.∴圆C的方程为x2+y2-4x=0,即(x-2)2+y2=4.∴|AB|=2r=4.又点O(0,0)到直线l:4x+3y-8=0的距离d==,∴S△OAB=|AB|·d=×4×=.答案 三、解答题13.已知点A(-3,0),B(3,0),动点P满足|PA|=2|PB|.(1)若点P的轨迹为曲线C,求此曲线的方程;(2)若点Q在直线l1:x+y+3=0上,直线l2经过点Q且与曲线C只有一个公共点M,求|QM|的最小值.解 (1)设点P的坐标为(x,y),则=26\n化简可得(x-5)2+y2=16,即为所求.(2)曲线C是以点(5,0)为圆心,4为半径的圆,如图.由直线l2是此圆的切线,连接CQ,则|QM|==,当CQ⊥l1时,|CQ|取最小值,|CQ|==4,此时|QM|的最小值为=4.14.在平面直角坐标系xOy中,曲线y=x2-6x+1与坐标轴的交点都在圆C上.(1)求圆C的方程;(2)若圆C与直线x-y+a=0交于A,B两点,且OA⊥OB,求a的值.解 (1)曲线y=x2-6x+1与坐标轴的交点为(0,1),(3±2,0).故可设圆心坐标为(3,t),则有32+(t-1)2=2+t2.解得t=1,则圆的半径为=3.所以圆的方程为(x-3)2+(y-1)2=9.(2)设A(x1,y1),B(x2,y2),其坐标满足方程组消去y得到方程2x2+(2a-8)x+a2-2a+1=0,由已知可得判别式Δ=56-16a-4a2>0,由根与系数的关系可得x1+x2=4-a,x1x2=,①由OA⊥OB可得x1x2+y1y2=0.又y1=x1+a,y2=x2+a.所以2x1x2+a(x1+x2)+a2=0.由①②可得a=-1,满足Δ>0,故a=-1.15.已知以点C(t∈R,t≠0)为圆心的圆与x轴交于点O,A,与y轴交于点O,B,其中O为原点.(1)求证:△AOB的面积为定值;(2)设直线2x+y-4=0与圆C交于点M,N,若|OM|=|ON|,求圆C的方程;(3)在(2)的条件下,设P,Q分别是直线l:x+y+2=0和圆C上的动点,求|PB|+|PQ6\n|的最小值及此时点P的坐标.(1)证明 由题设知,圆C的方程为(x-t)2+2=t2+,化简得x2-2tx+y2-y=0,当y=0时,x=0或2t,则A(2t,0);当x=0时,y=0或,则B,∴S△AOB=|OA|·|OB|=|2t|·=4为定值.(2)解 ∵|OM|=|ON|,则原点O在MN的中垂线上,设MN的中点为H,则CH⊥MN,∴C,H,O三点共线,则直线OC的斜率k===,∴t=2或t=-2.∴圆心为C(2,1)或(-2,-1),∴圆C的方程为(x-2)2+(y-1)2=5或(x+2)2+(y+1)2=5,由于当圆方程为(x+2)2+(y+1)2=5时,直线2x+y-4=0到圆心的距离d>r,此时不满足直线与圆相交,故舍去,∴圆C的方程为(x-2)2+(y-1)2=5.(3)解 点B(0,2)关于直线x+y+2=0的对称点为B′(-4,-2),则|PB|+|PQ|=|PB′|+|PQ|≥|B′Q|,又B′到圆上点Q的最短距离为|B′C|-r=-=3-=2.所以|PB|+|PQ|的最小值为2,直线B′C的方程为y=x,则直线B′C与直线x+y+2=0的交点P的坐标为.6
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
浙江版2022高考数学二轮复习6.1直线与圆专题能力训练
浙江专用2022高考数学二轮复习专题6.2.2概率精练理
浙江专用2022高考数学二轮复习专题6.2.1计数原理精练理
浙江专用2022高考数学二轮复习专题6.1.1复数精练理
浙江专用2022高考数学二轮复习专题5.3圆锥曲线的热点问题精练理
浙江专用2022高考数学二轮复习专题4.2空间中的平行与垂直精练理
浙江专用2022高考数学二轮复习专题2.3平面向量精练理
江苏专用2022高考数学二轮复习专题五第1讲直线与圆提升训练理
新课标2022届高考数学二轮复习专题能力训练14直线与圆理
备战2022高考数学大二轮复习专题六直线圆圆锥曲线专题能力训练16直线与圆理
文档下载
收藏
所属:
高考 - 二轮专题
发布时间:2022-08-25 23:15:09
页数:6
价格:¥3
大小:79.74 KB
文章作者:U-336598
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划