首页

浙江专用2022高考数学二轮复习专题规范练3函数问题理

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/4

2/4

剩余2页未读,查看更多内容需下载

规范练三 函数问题1.已知函数f(x)=-x2+2ex+m-1,g(x)=x+(x>0).(1)若y=g(x)-m有零点,求m的取值范围;(2)确定m的取值范围,使得g(x)-f(x)=0有两个相异实根.解 (1)法一 ∵x>0时,g(x)=x+≥2=2e,等号成立的条件是x=e,故g(x)的值域是[2e,+∞),因而只需m≥2e,则y=g(x)-m就有零点.∴m的取值范围是[2e,+∞).法二 作出g(x)=x+(x>0)的大致图象如图:可知若使y=g(x)-m有零点,则只需m≥2e.∴m的取值范围是[2e,+∞).(2)若g(x)-f(x)=0有两个相异的实根,即g(x)与f(x)的图象有两个不同的交点,作出g(x)=x+(x>0)的大致图象.∵f(x)=-x2+2ex+m-1=-(x-e)2+m-1+e2,∴其图象的对称轴为x=e,开口向下,最大值为m-1+e2.故当m-1+e2>2e,即m>-e2+2e+1时,g(x)与f(x)有两个交点,即g(x)-f(x)=0有两个相异实根.∴m的取值范围是(-e2+2e+1,+∞).2.已知f(x)=,x∈[1,+∞).4\n(1)当a=时,求函数f(x)的最小值;(2)若对任意x∈[1,+∞),f(x)>0恒成立,试求实数a的取值范围.解 (1)当a=时,f(x)=x++2,联想到g(x)=x+的单调性,猜想到求f(x)的最值可先证明f(x)的单调性.任取1≤x1<x2,则f(x1)-f(x2)=(x1-x2)+=,∵1≤x1<x2,∴x1x2>1,∴2x1x2-1>0.又x1-x2<0,∴f(x1)<f(x2),∴f(x)在[1,+∞)上是增函数,∴f(x)在[1,+∞)上的最小值为f(1)=.(2)在区间[1,+∞)上,f(x)=>0恒成立,则⇔等价于a大于函数φ(x)=-(x2+2x)在[1,+∞)上的最大值.只需求函数φ(x)=-(x2+2x)在[1,+∞)上的最大值.φ(x)=-(x+1)2+1在[1,+∞)上递减,∴当x=1时,φ(x)最大值为φ(1)=-3.∴a>-3,故实数a的取值范围是(-3,+∞).3.(2022·浙江卷)已知函数f(x)=x2+ax+b(a,b∈R),记M(a,b)是|f(x)|在区间[-1,1]上的最大值.(1)证明:当|a|≥2时,M(a,b)≥2;(2)当a,b满足M(a,b)≤2时,求|a|+|b|的最大值.(1)证明 由f(x)=2+b-,得对称轴为直线x=-.由|a|≥2,得|-|≥1,故f(x)在[-1,1]上单调,所以M(a,b)=max{|f(1)|,|f(-1)|}.当a≥2时,由f(1)-f(-1)=2a≥4,4\n得max{f(1),-f(-1)}≥2,即M(a,b)≥2.当a≤-2时,由f(-1)-f(1)=-2a≥4,得max{f(-1),-f(1)}≥2,即M(a,b)≥2.综上,当|a|≥2时,M(a,b)≥2.(2)解 由M(a,b)≤2得|1+a+b|=|f(1)|≤2,|1-a+b|=|f(-1)|≤2,故|a+b|≤3,|a-b|≤3.由|a|+|b|=得|a|+|b|≤3.当a=2,b=-1时,|a|+|b|=3,且|x2+2x-1|在[-1,1]上的最大值为2.即M(2,-1)=2.所以|a|+|b|的最大值为3.4.某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y(万元)与年产量x(吨)之间的函数关系式可以近似地表示为y=-48x+8000,已知此生产线年产量最大为210吨.(1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;(2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?解 (1)每吨平均成本为万元.则=+-48≥2-48=32,当且仅当=,即x=200时取等号.∴年产量为200吨时,每吨平均成本最低为32万元.(2)设年获得总利润为R(x)万元.则R(x)=40x-y=40x-+48x-8000=-+88x-8000=-(x-220)2+1680(0≤x≤210).∵R(x)在[0,210]上是增函数,∴x=210时,4\nR(x)有最大值为-(210-220)2+1680=1660.∴年产量为210吨时,可获得最大利润1660万元.4

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 23:15:03 页数:4
价格:¥3 大小:35.64 KB
文章作者:U-336598

推荐特供

MORE