首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
二轮专题
>
高考数学高考试题教学运用与探究探究中寻求通法类比中提升素养
高考数学高考试题教学运用与探究探究中寻求通法类比中提升素养
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/6
2
/6
剩余4页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
探究中寻求通法类比中提升素养2022年四川省高考数学理的第20题是耐人寻味的圆锥曲线中的定点问题.圆锥曲线中的定点问题是指运动变化中的直线或曲线恒过平面内的某个定点而不受或曲线的位置变化影响的一类问题,是在运动变化中寻找不变量的一类题型.其解题方法体现了一般与特殊的数学思想,是数学思想与数学知识紧密结合产生的一类综合性试题,也是高考考查考生综合能力的热点题型之一.下面结合这道题的解答,探讨圆锥曲线的定点问题的求解策略.一、考题再现【例1】(2022四川理)如图,椭圆的离心率是,过点的动直线与椭圆相交于两点,当直线平行于轴时,直线被椭圆截得的线段长为.(Ⅰ)求椭圆的方程;(Ⅱ)在平面直角坐标系中,是否存在与点不同的定点,使得恒成立?若存在,求出点的坐标;若不存在,请说明理由.二、通法的探寻【解析】(Ⅰ);(Ⅱ)法1当直线的斜率存在时,可设定点为,直线的方程为,的坐标分别为,联立得,6\n其判别式,所以,,欲证,所以,化简可得:,因为,所以,即,所以,欲使之恒成立,则,解之得:,当直线的斜率不存在时,,结论也成立.所以存在不同于点的定点满足条件.【评注】圆锥曲线的定点问题可以设出定点坐标,借助于待定系数法,转化为等量关系恒成立的问题加以求解,但运算量过大.法2当直线与轴平行时,设直线与椭圆相交于两点,如果存在定点满足条件,则,即,所以点在轴上,可设点的坐标为;当直线的斜率存在时,可设定点为,直线的方程为,的坐标分别为,联立得,其判别式,所以,,6\n欲证,所以,即,由等比性质知化简可得:,因为,所以,即,所以恒成立,所以.当直线的斜率不存在时,结论也成立,得证.【评注】圆锥曲线的定点问题往往借助于某种特殊情形确定出这个定点的局部特征,再借助于待定系数法,转化为等量关系恒成立的问题解决.此乃特殊与一般的思想之“特殊”.而特殊情形的选择不一定就是平行于坐标轴的情形,具有一定的灵活性、技巧性.法3当直线与轴平行时,设直线与椭圆相交于两点,如果存在定点满足条件,则,即,所以点在轴上,可设点的坐标为;当直线与轴垂直时,设直线与椭圆相交于两点,则,由,有,解得或,所以,若存在不同于点的定点满足条件,则点的坐标只可能为;下面证明:对任意的直线,均有.欲证,所以,即,即,由等比性质知,因为,只需证,即,由,显然得证.所以存在不同于点的定点满足条件.法4前同法3.又,所以,6\n又因所在直线垂直于轴,即是的平分线,因此存在不同于点的定点满足条件.【评注】圆锥曲线的定点问题往往是先根据特殊情况找到这个定点,再对一般情况作出证明,即“特殊情形求定点,一般情形证定点.”其中“证”可以是“论证”,论证的运算量比较大,也可以“验证”,过程就自然简洁.法5前同法3.易知,点关于轴对称的点的坐标为,因为,所以,所以,即三点共线,故.所以存在不同于点的定点满足条件.【评注】圆锥曲线的定点问题的解决过程中,如果挖掘出其蕴含的几何特征,我们的求解过程就会十分顺畅自然.本题中,如果注意到比例式就是平面几何中的三角形的角平分线定理,只需证明即可.三、通法的延伸【例2】(2022四川省高考数学文科试题的第20题)如图,椭圆的离心率为,点在短轴上,且(Ⅰ)求椭圆的方程;(Ⅱ)设为坐标原点,过点的动直线与椭圆交于两点,是否存在常数,使得为定值?若存在,求的值;若不存在,请说明理由.【解析】(Ⅰ);6\n(Ⅱ)当直线斜率不存在时,直线即为直线,此时,,此时;当直线斜率为0时,,,此时;若存在常数,使得为定值,势必有.当直线的斜率存在时,可设直线程为,坐标分别为,联立,得,其判别式,所以.从而故存在常数,使得为定值.【评注】圆锥曲线的定值问题往往是先根据特殊情况找到这个定值,再对一般情况作出证明或验证,即“特殊情形求定值,一般情形证定值.”四、规律的探究类似于法5,或者类似于法3或法4,可以证明如下的结论:【变式1】圆,过点的动直线与圆相交于两点,若存在与点不同的定点,使得恒成立,则.【变式2】圆,过点的动直线与圆相交于两点,若存在与点不同的定点,使得恒成立,则.【变式3】抛物线,过点的动直线与椭圆相交于两点,若存在与点不同的定点,使得恒成立,则.【变式4】椭圆,过点的动直线6\n与椭圆相交于两点,若存在与点不同的定点,使得恒成立,则.【变式5】椭圆,过点的动直线与椭圆相交于两点,若存在与点不同的定点,使得恒成立,则.【变式6】双曲线,过点的动直线与双曲线相交于两点,若存在与点不同的定点,使得恒成立,则.【变式7】双曲线,过点的动直线与双曲线相交于两点,若存在与点不同的定点,使得恒成立,则.五、结束语罗增儒教授曾说:“数学解题无禁区,数学教学有讲究.”我们在数学教学中,重结果、更重过程,重知识、更重能力,轻技巧、重通性通法,尊重差异、关注个性,有意积累知识方法链,让知识环环相扣、方法链链相连,唯有如此,我们的学生才能得以减负,领悟数学的本质,达到思维品质的提升.6
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
高考数学高考试题教学运用与探究破解复合函数方程
高考数学高考试题教学运用与探究圆锥曲线的内接直角三角形的探究
高考数学高考试题教学运用与探究回归数学本质力求道法自然素材
高考数学高考试题教学运用与探究再探三次曲线的切线条数
历史(心得)之浅谈探究式教学在中学历史教学中的运用
美术(心得)之探究性学习在美术教学中的运用
体育(心得)之探究法在中学体育教学中的运用
物理(心得)之探究式教学在初中物理教学活动中的运用
物理(心得)之在探究中激发学生兴趣 在运用中培养学生能力
音乐(心得)之情感体验法在初中音乐欣赏课中的运用与探究
文档下载
收藏
所属:
高考 - 二轮专题
发布时间:2022-08-25 22:51:21
页数:6
价格:¥3
大小:390.38 KB
文章作者:U-336598
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划