首页

高考理科数学第二次模拟卷

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/11

2/11

剩余9页未读,查看更多内容需下载

高考理科数学第二次模拟卷(数学理)命题、审校人:沈阳二中杨宁生考试时间:120分钟满分:150分一、选择题:本大题共12小题,每小题5分,满分60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若四个幂函数,,,在同一坐标系中的图象如右图,则、、、的大小关系是()A.B.C.D.2.定义运,则符合条件的复数的共轭复数所对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限3.已知函数若,则的取值范围是()A.B.或C.D.或4.平面外有两条直线和,如果和在平面内的射影分别是和,给出下列四个命题:①;②;③与相交与相交或重合;④与平行与平行或重合.其中不正确的命题个数是()A.1B.2C.3D.45.一个蜂巢里有1只蜜蜂,第1天,它飞出去找回了5个伙伴;第2天,6只蜜蜂飞出去,各自找回了5个伙伴,……,如果这个找伙伴的过程继续下去,第6天所有的蜜蜂都归巢后,蜂巢中一共有()只蜜蜂.A.55986B.46656C.216D.366.已知正整数,满足,使得取最小值时,则实数对是()A.(5,10)B.(6,6)C.(10,5)D.(7,2)11/11\n7.=()A.B.C.D.8.某部队为了了解战士课外阅读情况,随机调查了50名战士,得到他们在某一天各自课外阅读所用时间的数据.结果用右面的条形图表示,根据条形图可得这50名战士这一天平均每人的课外阅读时间为()A.B.C.D.9.从数字1,2,3,4,5中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为()A.B.C.D.10.计算的结果是()A.B.C.D.11.设斜率为的直线与椭圆,()交于不同的两点,且这两个交点在轴上的射影恰好是椭圆的两个焦点,则该椭圆的离心率为()A.B.C.D.12.一个圆锥被过顶点的平面截去了较小的一部分几何体,余下的几何体的三视图如图,则该圆锥的体积为()A.B.C.D.二、填空题:本大题共4小题.每小题5分,满分20分。13.实数、满足不等式组,则的取值范围为.14.如果执行下面的程序框图,那么输出的S等于.11/11\n15.对正整数,设抛物线,过任作直线交抛物线于,两点,则数列的前项和公式是.16.对下面四个命题:①若、、为集合,,,,则;②二项式的展开式中,其常数项是240;③对直线、,平面、,若//,//,,则//;④函数,()与函数,()互为反函数.其中正确命题的序号是.三、解答题:本大题共6小题,满分70分。解答须写出文字说明,证明过程和演算步骤。17.(本小题满分12分)已知为坐标原点,,,,(且)(1)求的单调递增区间;(2)若的定义域为,值域,求,的值。18.(本小题满分12分)四棱锥中,底面,.底面11/11\n为直角梯形,,,.点在棱上,且.(1)求异面直线与所成的角;(2)求证:平面;(3)求二面角的大小.(用反三角函数表示).19.(本题满分12分)当为正整数时,区间,表示函数在上函数值取整数值的个数,当时,记.当,表示把“四舍五入”到个位的近似值,如,,,,…,当为正整数时,表示满足的正整数的个数.(Ⅰ)求,;(Ⅱ)求证:时,;(Ⅲ)当为正整数时,集合中所有元素之和为,记,求证:20.(本小题满分12分)设双曲线的两个焦点分别为、,离心率为2.(1)求此双曲线的渐近线、的方程;11/11\n(1)若、分别为、上的点,且,求线段AB的中点M的轨迹方程,并说明轨迹是什么曲线;(2)过点能否作出直线,使与双曲线交于、两点,且若存在,求出直线的方程;若不存在,说明理由.21.(本小题满分12分)已知函数,(为常数)是实数集上的奇函数,函数是区间上的减函数。(1)求的值;(2)若在恒成立,求的取值范围;(3)讨论关于的方程的根的个数。请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题记分。做答时用2B铅笔在答题卡上把所选题目对应的题号涂黑。22.(本小题满分10分)选修4—1:几何证明选讲已知:如右图,在等腰梯形中,,过点作的平行线,交的延长线于点.求证:(1);(2)23.(本小题满分10分)选修4—4:坐标系与参数方程设过原点的直线与圆:的一个交点为,点为线段的中点。(1)求圆C的极坐标方程;(2)求点M轨迹的极坐标方程,并说明它是什么曲线.24.(本小题满分10分)选修4—5:不等式选讲解不等式.11/11\n2022届高三第二次模拟考试试题数学(理)参考答案1.B2.A3.B4.D5.B6.A7.C8.B9.D10.C11.A12.C13.14.44115.16.②③17.解:(1)∵…………2分当时,由,(),得的单调递增区间为,()……4分当时,,(),得的单调递增区间,()……6分(2),,∴,……8分当时,,解得,不满足,舍去……10分当时,,解得,符合条件,综上,,……12分18.解:(1)建立如图所示的直角坐标系11/11\n设,则,,,,,∵,∴,即,∴……2分∵,,∴,∴异面直线CD与AP所成的角为.……4分(2)连结AC交BD于G,连结,∴,又∴……5分∴……6分又平面,平面∴平面…………8分(3)设平面的法向量为,因为,,由得所以,于是,…………10分又因为平面的法向量所以,所以,二面角的大小为…………12分19.解:(Ⅰ)∵,∴当,,为增函数,,∴.……2分同理时,,为增函数,11/11\n,∴,∴……3分又∵表示满足的正整数的个数。∴,∴,∴.……4分(Ⅱ)当为正整数,且,时,为增函数,∴∴∴…5分∴,.……6分又∵表示满足的正整数的个数,∴∴,∴,,,…,,共个。∴,∴…………8分(Ⅲ)由(Ⅱ)知:∴…………10分∴11/11\n…………12分20.解:(1)∵,∴∵,∴,…………2分∴双曲线方程为,渐近线方程为…………3分(2)设,,的中点∵∴∴∵,,,…………5分∴,∴∴,即…………7分则的轨迹是中心在原点,焦点在轴上,长轴长为,短轴长为的椭圆…(8分)(3)假设存在满足条件的直线设:,与双曲线交于、∵∴∴∴…………10分11/11\n∵,∴,…………11分∴∴不存在,即不存在满足条件的直线.……12分21.解:(1)∵是实数集R上的奇函数∴∴……3分(2)∵是区间的减函数∴,∴只需∴,()恒成立……5分令,()则∴,而恒成立,∴……7分(3)由(1)知∴方程令,∴………8分当时,∴,在上是增函数当时,∴,在上是减函数当时,……9分而11/11\n∴当,即时,方程无解;……10分当,即时,方程有一个根;……11分当,即时,方程有两个根;……12分22.证明:(1)四边形是等腰梯形,∴∵,,∴……5分(2)∵,∴,∵,∴,……8分∵,∴∴,∴∽∴∴…………10分23.解:圆的极坐标方程为……4分设点的极坐标为,点的极坐标为,∵点为线段的中点,∴,……7分将,代入圆的极坐标方程,得∴点轨迹的极坐标方程为,它表示圆心在点,半径为的圆.……10分23.解:原不等式等价于(Ⅰ)或(Ⅱ)……4分或……7分或或∴原不等式的解集为{或或}………………10分本资料由《七彩教育网》www.7caiedu.cn提供!11/11

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 22:45:43 页数:11
价格:¥3 大小:358.19 KB
文章作者:U-336598

推荐特供

MORE