首页

鲁京津专用2022版高考数学复习考前三个月第三篇考点回扣5不等式与线性规划理

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/3

2/3

剩余1页未读,查看更多内容需下载

回扣5 不等式与线性规划[知识方法回顾]1.一元二次不等式的解法解一元二次不等式ax2+bx+c>0(a≠0)或ax2+bx+c<0(a≠0),可利用一元二次方程,一元二次不等式和二次函数间的关系.一元二次不等式的解集如下表所示:判别式Δ=b2-4acΔ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象一元二次方程ax2+bx+c=0(a>0)的根有两相异实根x1,x2(x1<x2)有两相等实根x1=x2=-没有实数根不等式ax2+bx+c>0(a>0)的解集{x|x>x2或x<x1}{x|x∈R且x≠-}R不等式ax2+bx+c<0(a>0)的解集{x|x1<x<x2}∅∅2.一元二次不等式的恒成立问题(1)ax2+bx+c>0(a≠0)恒成立的条件是(2)ax2+bx+c<0(a≠0)恒成立的条件是3.分式不等式>0(<0)⇔f(x)g(x)>0(<0);≥0(≤0)⇔4.基本不等式(1)①a2+b2≥2ab(a,b∈R)当且仅当a=b时取等号.3\n②≥(a,b∈(0,+∞)),当且仅当a=b时取等号.(2)几个重要的不等式:①ab≤2(a,b∈R);②≥≥≥(a>0,b>0,当a=b时等号成立).③a+≥2(a>0,当a=1时等号成立);④2(a2+b2)≥(a+b)2(a,b∈R,当a=b时等号成立);(3)最值问题:设x,y都为正数,则有:①若x+y=s(和为定值),则x=y时,积xy取得最大值;②若xy=p(积为定值),则当x=y时,和x+y取得最小值2.5.线性规划中四个重要结论(1)点M(x0,y0)在直线l:Ax+By+C=0(B>0)上方(或下方)⇔Ax0+By0+C>0(或<0).(2)点A(x1,y1),B(x2,y2)在直线l:Ax+By+C=0同侧(或异侧)⇔(Ax1+By1+C)·(Ax2+By2+C)>0(或<0).(3)点M(x0,y0)在两条直线A1x+B1y+C1=0,A2x+B2y+C2=0(B1B2>0)同侧(或异侧)⇔(A1x0+B1y0+C1)·(A2x0+B2y0+C2)>0(或<0).[易错易忘提醒]1.不等式两端同时乘以一个数或同时除以一个数,不讨论这个数的正负,从而出错.2.解形如一元二次不等式ax2+bx+c>0时,易忽视系数a的讨论导致漏解或错解,要注意分a>0,a<0进行讨论.3.应注意求解分式不等式时正确进行同解变形,不能把≤0直接转化为f(x)·g(x)≤0,而忽视g(x)≠0.4.容易忽视使用基本不等式求最值的条件,即“一正、二定、三相等”导致错解,如求函数f(x)=+的最值,就不能利用基本不等式求解最值;求解函数y=x+(x<0)时应先转化为正数再求解.5.解线性规划问题,要注意边界的虚实;注意目标函数中y的系数的正负;注意最优整数解.6.求解线性规划问题时,不能准确把握目标函数的几何意义导致错解,如是指已知区域内的点(x,y)与点(-2,2)连线的斜率,而(x-1)2+(y-1)2是指已知区域内的点(x,y3\n)到点(1,1)的距离的平方等.3

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 22:44:21 页数:3
价格:¥3 大小:33.73 KB
文章作者:U-336598

推荐特供

MORE