首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
二轮专题
>
2023年高考数学模拟试题八含解析202303192120
2023年高考数学模拟试题八含解析202303192120
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/12
2
/12
剩余10页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
2021年高考数学模拟试题一、单项选择题1.设集合,,则()A.B.C.D.【答案】D【解析】【分析】利用一元二次不等式的解法化简集合,再利用集合的交集运算即可得到结论.【详解】,,,故选:.【点睛】本题主要考查集合的基本运算,考查了一元二次不等式的解法,比较基础.2.已知复数满足,为虚数单位,则等于()A.B.C.D.【答案】A【解析】【分析】直接根据复数代数形式的除法法则计算可得;【详解】解:因为,所以故选:A【点睛】本题考查复数的运算,属于基础题.3.若向量,满足:,,,则()A.2B.C.1D.【答案】B【解析】\n【分析】根据向量垂直数量积等于零即可求解.【详解】由,,则,解得,所以.故选:B【点睛】本题考查了向量垂直数量积的表示,求向量的模,属于基础题.4.已知抛物线E:y2=2px(p>0)的焦点为F,O为坐标原点,OF为菱形OBFC的一条对角线,另一条对角线BC的长为2,且点B,C在抛物线E上,则p=()A.1B.C.2D.【答案】B【解析】【分析】由题意,,在抛物线上,代入抛物线方程可得,即可求出的值.【详解】解:由题意,,在抛物线上,代入抛物线方程可得,,,故选:B.【点睛】本题考查抛物线的方程,考查学生的计算能力,属于基础题.5.已知Sn是等差数列{an}的前n项和,则“Sn>nan对n≥2恒成立”是“a3>a4”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C【解析】【分析】设等差数列的公差为,利用等差数列的通项公式和前项和公式将等价转化为\n,将等价转化为,由此可得答案.【详解】设等差数列的公差为,当时,因为等价于等价于等价于等价于,等价于等价于,所以等价于,所以“”是“”的充分必要条件.故选:C.【点睛】本题考查了等差数列的通项公式和前项和公式,考查了充分必要条件的概念,属于基础题.6.函数(且)的图象可能为()A.B.C.D.【答案】D【解析】因为,故函数是奇函数,所以排除A,B;取,则,故选D.考点:1.函数的基本性质;2.函数的图象.7.已知函数是定义在上的奇函数,当时,,若实数满足\n,则的取值范围是()A.B.C.D.【答案】A【解析】【分析】根据题意,结合函数的解析式可得在区间,上为增函数,进而可得在上为增函数,且;据此可得,解可得的取值范围,即可得答案.【详解】解:根据题意,当,时,,则在区间,上为增函数,且,又由为奇函数,则在区间,上为增函数,且;故在上为增函数,,解可得:,即的取值范围为;故选:.【点睛】本题考查函数的奇偶性与单调性的综合应用,涉及不等式的解法,属于中档题.8.如图,在三棱锥A—BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别为AD,BC的中点,则异面直线AN,CM所成的角的余弦值是()A.B.C.D.【答案】C【解析】【分析】\n连接,取的中点,连接,根据异面直线所成角的定义,结合等腰三角形的性质、勾股定理、余弦定理进行求解即可.【详解】如图,连接,取的中点,连接,因为是中点,则,所以(或其补角)就是异面直线所成的角,因为AB=AC=BD=CD=3,AD=BC=2,点M,N分别为AD,BC的中点,所以,因此有,同理,,,.故选:C【点睛】本题考查了求异面直线所成的角,关键是根据定义作出异面直线所成的角,即平移其中一条直线与另一条相交,通过解三角形求出相交直线的夹角,可得异面直线所成角,要注意异面直线所成角的范围是.二、多项选择题9.下列说法正确的是()A.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一、二、三、四年级本科生人数之比为6:5:5:4,则应从一年级中抽取90名学生\nB.10件产品中有7件正品,3件次品,从中任取4件,则恰好取到1件次品的概率为C.已知变量x与y正相关,且由观测数据算得=3,=3.5,则由该观测数据算得的线性回归方程可能是=0.4x+2.3D.从装有2个红球和2个黑球的口袋内任取2个球,至少有一个黑球与至少有一个红球是两个互斥而不对立的事件【答案】ABC【解析】【分析】根据分层抽样、概率、线性回归直线方程、互斥事件与对立事件的概念分别进行判断.【详解】A.由分层抽样,应制取人数为,A正确;B.恰好取到1件次品的概率为,B正确;C.∵,直线=0.4x+2.3过中心点,可能是回归直线方程,C正确;D.一红球一黑球这个事件即是至少有一个红球,也是至少有一个黑球,因此它们不互斥,D错误.故选:ABC.【点睛】本题考查命题的真假判断,解题时需掌握分层抽样、概率、线性回归直线方程、互斥事件与对立事件的概念等知识,要求较高,属于中档题.10.已知定义在上的函数,是的导函数,且恒有成立,则 A.B.C.D.【答案】CD【解析】【分析】根据题意,令,,对其求导分析可得,即函数\n为减函数,结合选项分析可得答案.【详解】解:根据题意,令,,则其导数,又由,且恒有,则有,即函数为减函数,又由,则有,即,分析可得;又由,则有,即,分析可得.故选:.【点睛】本题考查函数的单调性与函数导数的关系,注意构造函数,并借助导数分析其单调性,属于中档题.11.设函数g(x)=sinωx(ω>0)向左平移个单位长度得到函数f(x),已知f(x)在[0,2π]上有且只有5个零点,则下列结论正确的是()A.f(x)的图象关于直线对称B.f(x)在(0,2π)上有且只有3个极大值点,f(x)在(0,2π)上有且只有2个极小值点C.f(x)在上单调递增D.ω的取值范围是[)【答案】CD【解析】【分析】利用正弦函数的对称轴可知,不正确;由图可知在上还可能有3个极小值点,不正确;由解得的结果可知,正确;根据在上递增,且,可知正确.\n【详解】依题意得,,如图:对于,令,,得,,所以的图象关于直线对称,故不正确;对于,根据图象可知,,在有3个极大值点,在有2个或3个极小值点,故不正确,对于,因为,,所以,解得,所以正确;对于,因为,由图可知在上递增,因为,所以,所以在上单调递增,故正确;故选:CD.【点睛】本题考查了三角函数的相位变换,考查了正弦函数的对称轴和单调性和周期性,考查了极值点的概念,考查了函数的零点,考查了数形结合思想,属于中档题.12.如图,在矩形ABCD中,M为BC的中点,将△AMB沿直线AM翻折成△AB1M,连接B1D,N为B1D的中点,则在翻折过程中,下列说法正确的是()A.存在某个位置,使得CN⊥AB1B.CN的长是定值C.若AB=BM,则AM⊥B1DD.若AB=BM=1,当三棱锥B1-AMD的体积最大时,三棱锥B1-AMD的外接球的表面积是4π【答案】BD【解析】\n【分析】中,取中点,连接交与,由题意判断三线,,共面共点,得出不成立;中,利用余弦定理可得是定值,判断正确;中,取中点,连接,,由题意判断不成立;中,当三棱锥的体积最大时,求出该三棱锥外接球的表面积即可.【详解】解:对于:如图1,取中点,连接交与,则,,如果,可得到,又,且三线,,共面共点,不可能,则错误.对于:如图1,可得由(定值),(定值),(定值),由余弦定理可得,所以是定值,则正确.对于:如图2,取中点,连接,,由题意得面,即可得,从而,由题意不成立,可得错误.对于:当平面平面时,三棱锥的体积最大,由题意得中点就是三棱锥的外接球的球心,球半径为1,表面积是,则正确.故选:BD.\n【点睛】本题考查了矩形的折叠问题,解题关键是正确理解线面、面面平行与垂直的判定和性质定理,属于中档题.三、填空题13.某药厂选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17),将其按从左到右的顺序分别编号为第一组,第二组,……,第五组,如图是根据实验数据制成的频率分布直方图,已知第一组与第二组共有20人,则第三组中的人数为_________.【答案】【解析】【分析】由频率以及直方图可得分布在区间第一组与第二组共有20人的频率,即可求出总的人数,求出第三组的人数.【详解】由直方图可得分布在区间第一组与第二组共有20人,分布在区间第一组与第二组的频率分别为0.24,0.16,设总的人数为n,则所以第3小组的人数为人.故答案为18\n【点睛】本题主要考查频率分布直方图中频数、频率等的计算,意在考查学生对这些知识的理解能力掌握水平.14.的展开式中x3的系数为_______.【答案】5【解析】【分析】利用二项式定理求解即可.【详解】的通项为令,此时系数为令,此时的系数为则的系数为故答案为:【点睛】本题主要考查了求指定项的系数,属于中档题.15.已知函数,则________.【答案】【解析】【分析】根据题意,由函数解析式可得,进而计算得到答案.【详解】根据题意,当时,,所以,当时,,所以.故答案为:.【点睛】本题主要考查函数值的计算,涉及分段函数的应用和对数计算,属于基础题.16.已知直线:,圆:,则圆的半径______;若在圆上存在两点,,在直线上存在一点,使得,则实数的取值范围是______.【答案】(1).(2).\n【解析】【分析】把圆方程配方后可得圆心坐标和半径,由作圆的两条切线,这两条切线的夹角不小于90°,由此可得的取值范围.【详解】圆的标准方程为,圆心为,半径为,若在圆上存在两点,,在直线上存在一点,使得,过作圆的两条切线(为切点),则,而当时,最大,只要此最大角即可,此时,圆心到直线的距离为.所以,解得.故答案为:;.【点睛】本题考查圆的标准方程,考查直线与圆的位置关系,解题关键是问题的转化,本题考查了等价转化思想,运算求解能力.属于中档题.
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
新疆生产建设兵团2022届中考数学模拟试题含解析
2023年高考数学模拟试题十六含解析202303192131
2023年高考数学模拟试题十八含解析202303192128
2023年高考数学模拟试题十二含解析202303192129
2023年高考数学模拟试题十九含解析202303192130
2023年高考数学模拟试题十三含解析202303192133
2023年高考数学模拟试题十七含解析202303192132
2023年高考数学模拟试题六含解析202303192124
湖南省长沙市高考数学模拟试卷(二模)试题 理(含解析)新人教A版
湖南省长沙市高考数学模拟试卷(二模)试题 文 新人教A版(含解析)
文档下载
收藏
所属:
高考 - 二轮专题
发布时间:2022-08-25 22:30:40
页数:12
价格:¥3
大小:1.19 MB
文章作者:U-336598
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划