2023版高考数学一轮复习课后限时集训64随机事件的概率含解析202303181131
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
课后限时集训(六十四) 随机事件的概率建议用时:40分钟一、选择题1.设事件A,B,已知P(A)=,P(B)=,P(A∪B)=,则A,B之间的关系一定为( )A.两个任意事件B.互斥事件C.非互斥事件D.对立事件B [因为P(A)+P(B)=+==P(A∪B),所以A,B之间的关系一定为互斥事件.故选B.]2.(多选)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,下面结论正确的是( )A.甲不输的概率B.乙不输的概率C.乙获胜的概率D.乙输的概率ABCD [甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,对于A,甲不输的概率为:P=+=,故A正确;对于B,乙不输的概率为:P=1-=,故B正确;对于C,乙获胜的概率为:P=1--=,故C正确;对于D,乙输的概率就是甲胜的概率,∴乙输的概率为:P=,故D正确.故选:ABCD.]3.口袋中有100个大小相同的红球、白球、黑球,其中红球45个,从口袋中摸出一个球,摸出白球的概率为0.23,则摸出黑球的概率为( )A.0.45B.0.67C.0.64D.0.32D [从中摸出一球,为红球的概率为=0.45.故摸出黑球的概率为1-0.45-0.23=0.32.]\n4.(多选)从装有2个红球和2个黑球的口袋中任取2个小球,则下列结论正确的是( )A.“至少一个红球”和“都是红球”是互斥事件B.“恰有一个黑球”和“都是黑球”是互斥事件C.“至少一个黑球”和“都是红球”是对立事件D.“恰有一个红球”和“都是红球”是对立事件BC [从装有2个红球和2个黑球的口袋中任取2个小球,对于A,“至少一个红球”和“都是红球”能同时发生,不是互斥事件,故A错误;对于B,“恰有一个黑球”和“都是黑球”不能同时发生,是互斥事件,故B正确;对于C,“至少一个黑球”和“都是红球”既不能同时发生,也不能同时不发生,是对立事件,故C正确;对于D,“恰有一个红球”和“都是红球”不能同时发生,能同时不发生,是互斥而不对立事件,故D错误.故选:BC.]5.掷一个骰子的试验,事件A表示“出现小于5的偶数点”,事件B表示“出现小于5的点数”,若表示B的对立事件,则一次试验中,事件A∪发生的概率为( )A.B.C.D.C [掷一个骰子的试验有6种可能结果.依题意P(A)==,P(B)==,∴P()=1-P(B)=1-=.∵表示“出现5点或6点”的事件,因此事件A与互斥,从而P(A∪)=P(A)+P()=+=.]二、填空题6.根据某医疗研究所的调查,某地区居民血型的分布为:O型50%,A型15%,B型30%,AB型5%.现有一血液为A型病人需要输血,若在该地区任选一人,那么能为病人输血的概率为________.65% [因为某地区居民血型的分布为:O型50%,A型15%,B型30%,AB型5%,现在能为A型病人输血的有O型和A型,故为病人输血的概率为50%+15%=65%.]7.从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B\n={抽到二等品},事件C={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1,则事件“抽到的产品不是一等品”的概率为________,“抽到二等品或三等品”的概率为________.0.35 0.3 [∵事件A={抽到一等品},且P(A)=0.65,∴事件“抽到的产品不是一等品”的概率为1-P(A)=1-0.65=0.35.“抽到二等品或三等品”的概率为P(B)+P(C)=0.2+0.1=0.3.”]8.某城市2020年的空气质量状况如下表所示:污染指数T3060100110130140概率P其中污染指数T≤50时,空气质量为优;50<T≤100时,空气质量为良;100<T≤150时,空气质量为轻微污染,则该城市2020年空气质量达到良或优的概率为________. [由题意可知2020年空气质量达到良或优的概率为P=++=.]三、解答题9.某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.商品顾客人数 甲乙丙丁100√×√√217×√×√200√√√×300√×√×85√×××98×√××(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?[解] (1)从统计表可以看出,在这1000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为=0.2.(2)从统计表可以看出,在这1000位顾客中有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品,所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为=0.3.\n(3)与(1)同理,可得:顾客同时购买甲和乙的概率可以估计为=0.2,顾客同时购买甲和丙的概率可以估计为=0.6,顾客同时购买甲和丁的概率可以估计为=0.1.所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.10.如图,A地到火车站共有两条路径L1和L2,现随机抽取100位从A地到达火车站的人进行调查,调查结果如下:所用时间(分钟)10~2020~3030~4040~5050~60选择L1的人数612181212选择L2的人数0416164(1)试估计40分钟内不能赶到火车站的概率;(2)分别求通过路径L1和L2所用时间落在上表中各时间段内的频率;(3)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径.[解] (1)由已知共调查了100人,其中40分钟内不能赶到火车站的有12+12+16+4=44(人),∴用频率估计相应的概率为p==0.44.(2)选择L1的有60人,选择L2的有40人,故由调查结果得频率为所用时间(分钟)10~2020~3030~4040~5050~60L1的频率0.10.20.30.20.2L2的频率00.10.40.40.1(3)设A1,A2分别表示甲选择L1和L2时,在40分钟内赶到火车站;B1,B2分别表示乙选择L1和L2时,在50分钟内赶到火车站.由(2)知P(A1)=0.1+0.2+0.3=0.6,P(A2)=0.1+0.4=0.5,∵P(A1)>P(A2),∴甲应选择L1.同理,P(B1)=0.1+0.2+0.3+0.2=0.8,P(B2)=0.1+0.4+0.4=0.9,∵P(B1)<P(B2),∴乙应选择L2.\n1.对一批产品的长度(单位:mm)进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上的为一等品,在区间[15,20)和区间[25,30)上的为二等品,在区间[10,15)和[30,35]上的为三等品.用频率估计概率,现从该批产品中随机抽取一件,则其为二等品的概率为( )A.0.09B.0.20C.0.25D.0.45D [设[25,30)上的频率为x,由所有矩形面积之和为1,即x+(0.02+0.04+0.03+0.06)×5=1,得[25,30)上的频率为0.25.所以产品为二等品的概率为0.04×5+0.25=0.45.]2.已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989据此估计,该运动员三次投篮恰有两次命中的概率为( )A.B.C.D.C [20组随机数中表示三次投篮恰好有两次命中的是191,271,932,812,393,其频率为=,以此估计该运动员三次投篮恰有两次命中的概率为.]3.经统计,在某储蓄所一个营业窗口等候的人数相应的概率如下:排队人数01234≥5概率0.10.160.30.30.10.04(1)至多2人排队等候的概率为________;(2)至少3人排队等候的概率为________.(1)0.56 (2)0.44 [记“无人排队等候”为事件A,“1人排队等候”为事件B,“2人排队等候”为事件C,“3人排队等候”为事件D,“4人排队等候”为事件E,“\n5人及5人以上排队等候”为事件F,则事件A,B,C,D,E,F彼此互斥.(1)记“至多2人排队等候”为事件G,则G=A∪B∪C,所以P(G)=P(A∪B∪C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.(2)法一:(利用互斥事件求概率)记“至少3人排队等候”为事件H,则H=D∪E∪F,所以P(H)=P(D∪E∪F)=P(D)+P(E)+P(F)=0.3+0.1+0.04=0.44.法二:(利用对立事件求概率)记“至少3人排队等候”为事件H,则其对立事件为事件G,所以P(H)=1-P(G)=0.44.]4.某商店计划每天购进某商品若干件,商店每销售一件该商品可获得利润50元,若供大于求,剩余商品全部退回,但每件退回商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获得利润30元.(1)若商店一天购进该商品10件,求当天的利润y(单位:元)关于当天的需求量n(单位:件,n∈N*)的函数解析式;(2)商店记录了50天该商品的日需求量n(单位:件),整理得下表:日需求量n/件89101112频数91115105(ⅰ)假设商店在这50天内每天购进10件该商品,求这50天的日利润的平均数;(ⅱ)若商店一天购进10件该商品,以50天记录的各日需求量的频率作为各日需求量的概率,求当天的利润大于500元的概率.[解] (1)当日需求量n≥10时,利润y=50×10+(n-10)×30=30n+200;当日需求量n<10时,利润y=50×n-(10-n)×10=60n-100.所以日利润y关于日需求量n的函数解析式为y=(2)(ⅰ)由(1)及表格可知,这50天中有9天的日利润为380元,有11天的日利润为440元,有15天的日利润为500元,有10天的日利润为530元,有5天的日利润为560元,所以这50天的日利润的平均数为×(380×9+440×11+500×15+530×10+560×5)=477.2(元).(ⅱ)若当天的利润大于500元,则日需求量大于10件,则当天的利润大于500元的概率P==.\n1.一只袋子中装有7个红玻璃球,3个绿玻璃球,从中无放回地任意抽取两次,每次只取一个,取得两个红球的概率为,取得两个绿球的概率为,则取得两个同颜色的球的概率为________;至少取得一个红球的概率为________. [由于“取得两个红球”与“取得两个绿球”是互斥事件,取得两个同色球,只需两互斥事件有一个发生即可,因而取得两个同色球的概率为P=+=.由于事件A“至少取得一个红球”与事件B“取得两个绿球”是对立事件,则至少取得一个红球的概率为P(A)=1-P(B)=1-=.]2.某河流上的一座水力发电站,每年六月份的发电量Y(单位:万千瓦时)与该河上游在六月份的降雨量X(单位:毫米)有关.据统计,当X=70时,Y=460;X每增加10,Y增加5.已知近20年X的值为140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160.(1)完成如下的频率分布表:近20年六月份降雨量频率分布表降雨量70110140160200220频率(2)假定今年6月份的降雨量与近20年六月份降雨量的分布规律相同,并将频率视为概率,求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率.[解] (1)在所给数据中,降雨量为110毫米的有3个,为160毫米的有7个,为200毫米的有3个,故近20年六月份降雨量频率分布表为降雨量70110140160200220频率(2)由已知可得Y=+425,故P(“发电量低于490万千瓦时或超过530万千瓦时”)=P(Y<490或Y>530)=P(X<130或X>210)=P(X=70)+P(X=110)+P(X=220)=++=.
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)