首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
二轮专题
>
2023高考数学二轮复习专题练三核心热点突破专题五解析几何第1讲直线与圆含解析202303112183
2023高考数学二轮复习专题练三核心热点突破专题五解析几何第1讲直线与圆含解析202303112183
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/15
2
/15
剩余13页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
第1讲 直线与圆高考定位 考查重点是直线间的平行和垂直的条件、与距离有关的问题、直线与圆的位置关系(特别是弦长问题),此类问题难度属于中低档,一般以选择题、填空题的形式出现.真题感悟1.(2020·全国Ⅲ卷)在平面内,A,B是两个定点,C是动点.若·=1,则点C的轨迹为( )A.圆B.椭圆C.抛物线D.直线解析 以AB所在直线为x轴,线段AB的垂直平分线为y轴建立平面直角坐标系,设点A,B分别为(-a,0),(a,0)(a>0),点C为(x,y),则=(x+a,y),=(x-a,y),所以·=(x-a)(x+a)+y·y=x2+y2-a2=1,整理得x2+y2=a2+1.因此点C的轨迹为圆.故选A.答案 A2.(2020·全国Ⅱ卷)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x-y-3=0的距离为( )A.B.C.D.解析 因为圆与两坐标轴都相切,且点(2,1)在圆上.所以可设圆的方程为(x-a)2+(y-a)2=a2(a>0).则(2-a)2+(1-a)2=a2,解之得a=1或a=5.所以圆心的坐标为(1,1)或(5,5),所以圆心到直线2x-y-3=0的距离d==或d==.答案 B3.(2020·全国Ⅰ卷)已知⊙M:x2+y2-2x-2y-2=0,直线l:2x+y+2=0,点P为l上的动点.过点P作⊙M的切线PA,PB,切点为A,B,当|PM|·|AB|最小时,直线AB的方程为( )A.2x-y-1=0B.2x+y-1=0C.2x-y+1=0D.2x+y+1=0解析 由⊙M:x2+y2-2x-2y-2=0①,得⊙M:(x-1)2+(y-1)2=4,所以圆心M(1,1).\n如图,连接AM,BM,易知四边形PAMB的面积为|PM|·|AB|,欲使|PM|·|AB|最小,只需四边形PAMB的面积最小,即只需△PAM的面积最小.因为|AM|=2,所以只需|PA|最小.又|PA|==,所以只需直线2x+y+2=0上的动点P到M的距离最小,其最小值为=,此时PM⊥l,易求出直线PM的方程为x-2y+1=0.由得所以P(-1,0).易知P、A、M、B四点共圆,所以以PM为直径的圆的方程为x2+=,即x2+y2-y-1=0②,由①②得,直线AB的方程为2x+y+1=0,故选D.答案 D4.(2019·全国Ⅰ卷)已知点A,B关于坐标原点O对称,|AB|=4,⊙M过点A,B且与直线x+2=0相切.(1)若A在直线x+y=0上,求⊙M的半径;(2)是否存在定点P,使得当A运动时,|MA|-|MP|为定值?并说明理由.解 (1)因为⊙M过点A,B,所以圆心M在AB的垂直平分线上.由已知A在直线x+y=0上,且A,B关于坐标原点O对称,所以M在直线y=x上,故可设M(a,a).因为⊙M与直线x+2=0相切,所以⊙M的半径为r=|a+2|.连接MA,由已知得|AO|=2.又MO⊥AO,故可得2a2+4=(a+2)2,解得a=0或a=4.故⊙M的半径r=2或r=6.(2)存在定点P(1,0),使得|MA|-|MP|为定值.理由如下:设M(x,y),由已知得⊙M的半径为r=|x+2|,|AO|=2.由于MO⊥AO,故可得x2+y2+4=(x+2)2,化简得M的轨迹方程为y2=4x.\n因为曲线C:y2=4x是以点P(1,0)为焦点,以直线x=-1为准线的抛物线,所以|MP|=x+1.因为|MA|-|MP|=r-|MP|=x+2-(x+1)=1,所以存在满足条件的定点P.考点整合1.两条直线平行与垂直的判定若两条不重合的直线l1,l2的斜率k1,k2存在,则l1∥l2⇔k1=k2,l1⊥l2⇔k1k2=-1.若给出的直线方程中存在字母系数,则要考虑斜率是否存在.2.两个距离公式(1)两平行直线l1:Ax+By+C1=0与l2:Ax+By+C2=0间的距离d=.(2)点(x0,y0)到直线l:Ax+By+C=0的距离d=.3.圆的方程(1)圆的标准方程:(x-a)2+(y-b)2=r2(r>0),圆心为(a,b),半径为r.(2)圆的一般方程:x2+y2+Dx+Ey+F=0(D2+E2-4F>0),圆心为,半径为r=.4.直线与圆的位置关系的判定(1)几何法:把圆心到直线的距离d和半径r的大小加以比较:d<r⇔相交;d=r⇔相切;d>r⇔相离.(2)代数法:将圆的方程和直线的方程联立起来组成方程组,利用判别式Δ来讨论位置关系:Δ>0⇔相交;Δ=0⇔相切;Δ<0⇔相离.热点一 直线的方程【例1】(1)(2020·西安检测)若直线x+(1+m)y-2=0与直线mx+2y+4=0平行,则m的值是( )A.1B.-2C.1或-2D.-(2)已知直线l1:kx-y+4=0与直线l2:x+ky-3=0(k≠0)分别过定点A,B,又l1,l2相交于点M,则|MA|·|MB|的最大值为________.解析 (1)由题意知m(1+m)-2×1=0,解得m=1或-2,当m=-2时,两直线重合,舍去;当m=1时,满足两直线平行,所以m=1.\n(2)由题意可知,直线l1:kx-y+4=0经过定点A(0,4),直线l2:x+ky-3=0经过定点B(3,0),注意到直线l1:kx-y+4=0和直线l2:x+ky-3=0始终垂直,点M又是两条直线的交点,则有MA⊥MB,所以|MA|2+|MB|2=|AB|2=25.故|MA|·|MB|≤(当且仅当|MA|=|MB|=时取“=”).答案 (1)A (2)探究提高 1.求解两条直线平行的问题时,在利用A1B2-A2B1=0建立方程求出参数的值后,要注意代入检验,排除两条直线重合的可能性.2.求直线方程时应根据条件选择合适的方程形式利用待定系数法求解,同时要考虑直线斜率不存在的情况是否符合题意.【训练1】(1)(多选题)光线自点(2,4)射入,经倾斜角为135°的直线l:y=kx+1反射后经过点(5,0),则反射光线还经过下列哪个点( )A.(14,2)B.C.(13,2)D.(13,1)(2)已知l1,l2是分别经过A(1,1),B(0,-1)两点的两条平行直线,当l1,l2间的距离最大时,则直线l1的方程是________.解析 (1)因为直线l的倾斜角为135°,所以直线l的斜率k=-1,设点(2,4)关于直线l:y=-x+1的对称点为(m,n),则解得所以反射光线经过点(-3,-1)和点(5,0),则反射光线所在直线的方程为y=(x-5)=(x-5),当x=13时,y=1;当x=14时,y=.故选BD.(2)当直线AB与l1,l2垂直时,l1与l2间的距离最大.由A(1,1),B(0,-1)得kAB==2.∴两平行直线的斜率k=-.∴直线l1的方程是y-1=-(x-1),即x+2y-3=0.答案 (1)BD (2)x+2y-3=0\n热点二 圆的方程【例2】(1)(2020·石家庄模拟)古希腊数学家阿波罗尼斯在其巨著《圆锥曲线论》中提出“在同一平面上给出三点,若其中一点到另外两点的距离之比是一个大于零且不等于1的常数,则该点轨迹是一个圆”.现在,某电信公司要在甲、乙、丙三地搭建三座5G信号塔来构建一个特定的三角形信号覆盖区域,以实现5G商用,已知甲、乙两地相距4km,丙、甲两地距离是丙、乙两地距离的倍,则这个三角形信号覆盖区域的最大面积(单位:km2)是( )A.2B.4C.3D.4(2)已知圆C的圆心在直线x+y=0上,圆C与直线x-y=0相切,且在直线x-y-3=0上截得的弦长为,则圆C的方程为________.解析 (1)以甲、乙两地所在直线为x轴,线段甲乙的垂直平分线为y轴建立平面直角坐标系,设甲、乙两地的坐标分别为(-2,0),(2,0),丙地坐标为(x,y)(y≠0),则=·,整理得(x-4)2+y2=12,可知丙地所在的圆的半径为r=2.所以三角形信号覆盖区域的最大面积为×4×2=4.(2)∵所求圆的圆心在直线x+y=0上,∴设所求圆的圆心为(a,-a).又∵所求圆与直线x-y=0相切,∴半径r==|a|.又所求圆在直线x-y-3=0上截得的弦长为,圆心(a,-a)到直线x-y-3=0的距离d=,∴d2+=r2,即+=2a2,解得a=1,∴圆C的方程为(x-1)2+(y+1)2=2.答案 (1)B (2)(x-1)2+(y+1)2=2探究提高 1.第(1)题是一道以阿波罗尼斯圆为背景的数学应用问题,解题关键是先利用题设条件给出的关系式,求出阿波罗尼斯圆的方程,即(x-4)2+y2=12,然后应用圆中的几何量求解三角形信号覆盖区域的最大面积.2.求圆的方程主要方法有两种:(1)直接法求圆的方程,根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程.(2)待定系数法求圆的方程时,若已知条件与圆心(a,b)和半径r有关,则设圆的标准方程,否则选择圆的一般方程.\n温馨提醒 解答圆的方程问题,应注意数形结合,充分运用圆的几何性质.【训练2】(1)(2020·北京卷)已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为( )A.4B.5C.6D.7(2)已知A,B分别是双曲线C:-=1的左、右顶点,P(3,4)为C上一点,则△PAB的外接圆的标准方程为________.解析 (1)由平面几何知识知,当且仅当原点、圆心、点(3,4)共线时,圆心到原点的距离最小且最小值为dmin=-1=4.故选A.(2)∵P(3,4)为C上一点,-=1,解得m=1,则B(1,0),A(-1,0),∴kPB==2,BP的中点为(2,2),PB的垂直平分线方程为l1:y=-(x-2)+2,AB的垂直平分线方程为l2:x=0,则圆心是l1与l2的交点M,联立l1与l2方程,解得则M(0,3),r=|MB|==,∴△PAB外接圆的标准方程为x2+(y-3)2=10.答案 (1)A (2)x2+(y-3)2=10热点三 直线(圆)与圆的位置关系角度1 圆的切线问题【例3】(1)(2020·全国Ⅲ卷)若直线l与曲线y=和圆x2+y2=都相切,则l的方程为( )A.y=2x+1B.y=2x+C.y=x+1D.y=x+(2)(多选题)在平面直角坐标系xOy中,圆C的方程为x2+y2-4x=0.若直线y=k(x+1)上存在一点P,使过点P所作的圆的两条切线相互垂直,则实数k的可能取值是( )A.1B.2C.3D.4\n解析 (1)易知直线l的斜率存在,设直线l的方程y=kx+b,则= ①,设直线l与曲线y=的切点坐标为(x0,)(x0>0),则y′|x=x0=x0-=k ②,=kx0+b ③,由②③可得b=,将b=,k=x0-代入①得x0=1或x0=-(舍去),所以k=b=,故直线l的方程y=x+.(2)由x2+y2-4x=0,得(x-2)2+y2=4,则圆心为C(2,0),半径r=2,过点P所作的圆的两条切线相互垂直,设两切点分别为A,B,连接AC,BC,所以四边形PACB为正方形,即PC=r=2,圆心到直线的距离d=≤2,即-2≤k≤2,所以实数k的取值可以是1,2.故选AB.答案 (1)D (2)AB探究提高 1.直线与圆相切时利用“切线与过切点的半径垂直,圆心到切线的距离等于半径”建立关于切线斜率的等式,所以求切线方程时主要选择点斜式.2.过圆外一点求解切线段长的问题,可先求出圆心到圆外点的距离,再结合半径利用勾股定理计算.【训练3】(1)(2020·浙江卷)已知直线y=kx+b(k>0)与圆x2+y2=1和圆(x-4)2+y2=1均相切,则k=__________,b=__________.(2)已知⊙O:x2+y2=1,点A(0,-2),B(a,2),从点A观察点B,要使视线不被⊙O挡住,则实数a的取值范围是( )A.(-∞,-2)∪(2,+∞)B.∪C.∪D.解析 (1)直线kx-y+b=0(k>0)分别与圆心坐标为(0,0),半径为1,及圆心坐标为(4,0),半径为1的两圆相切,可得\n由①②,解得(2)易知点B在直线y=2上,过点A(0,-2)作圆的切线.设切线的斜率为k,则切线方程为y=kx-2,即kx-y-2=0.由d==1,得k=±.∴切线方程为y=±x-2,和直线y=2的交点坐标分别为,.故要使视线不被⊙O挡住,则实数a的取值范围是∪.答案 (1) - (2)B角度2 圆的弦长的相关计算【例4】在直角坐标系xOy中,曲线y=x2+mx-2与x轴交于A,B两点,点C的坐标为(0,1).当m变化时,解答下列问题:(1)能否出现AC⊥BC的情况?说明理由;(2)证明过A,B,C三点的圆在y轴上截得的弦长为定值.(1)解 不能出现AC⊥BC的情况,理由如下:设A(x1,0),B(x2,0),则x1,x2满足方程x2+mx-2=0,所以x1x2=-2.又C的坐标为(0,1),故AC的斜率与BC的斜率之积为·=-,所以不能出现AC⊥BC的情况.(2)证明 BC的中点坐标为,可得BC的中垂线方程为y-=x2.由(1)可得x1+x2=-m,所以AB的中垂线方程为x=-.联立又x+mx2-2=0,③\n由①②③解得x=-,y=-.所以过A,B,C三点的圆的圆心坐标为,半径r=.故圆在y轴上截得的弦长为2=3,即过A,B,C三点的圆在y轴上截得的弦长为定值.探究提高 1.研究直线与圆的位置关系最常用的解题方法为几何法,将代数问题几何化,利用数形结合思想解题.2.与圆的弦长有关的问题常用几何法,即利用圆的半径r,圆心到直线的距离d,及半弦长,构成直角三角形的三边,利用勾股定理来处理.【训练4】(1)(2020·天津卷)已知直线x-y+8=0和圆x2+y2=r2(r>0)相交于A,B两点.若|AB|=6,则r的值为__________.(2)(2020·菏泽联考)已知圆O:x2+y2=4,直线l与圆O交于P,Q两点,A(2,2),若|AP|2+|AQ|2=40,则弦PQ的长度的最大值为________.解析 (1)依题意得,圆心(0,0)到直线x-y+8=0的距离d==4,因此r2=d2+=25,又r>0,所以r=5.(2)设点M为PQ的中点,则|PM|=|MQ|,在△APQ中,由余弦定理易得|AP|2+|AQ|2=|AM|2+|PM|2+|MQ|2+|AM|2=2(|AM|2+|MQ|2)又|MQ|2=|OQ|2-|OM|2=4-|OM|2,|AP|2+|AQ|2=40.∴40=2|AM|2+8-2|OM|2,则|AM|2-|OM|2=16,设M(x,y),则(x-2)2+(y-2)2-(x2+y2)=16.化简得x+y+2=0.当OM⊥l时,OM取到最小值,即|OM|min==.此时,|PQ|=2=2.\n故弦PQ的长度的最大值为2.答案 (1)5 (2)2A级 巩固提升一、选择题1.(2020·长沙模拟)命题p:m=2,命题q:直线(m-1)x-y+m-12=0与直线mx+2y-3m=0垂直,则p是q成立的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析 若两直线垂直,则(m-1)×m+(-1)×2=0,解之得m=2或m=-1.∴p是q成立的充分不必要条件.答案 A2.过点A(1,2)的直线在两坐标轴上的截距之和为零,则该直线方程为( )A.y-x=1B.y+x=3C.2x-y=0或x+y=3D.2x-y=0或y-x=1解析 当直线过原点时,可得斜率为=2,故直线方程为y=2x,当直线不过原点时,设方程为+=1,代入点(1,2)可得-=1,解得a=-1,方程为x-y+1=0,故所求直线方程为2x-y=0或y-x=1.答案 D3.过点(3,1)作圆(x-1)2+y2=r2的切线有且只有一条,则该切线的方程为( )A.2x+y-5=0B.2x+y-7=0C.x-2y-5=0D.x-2y-7=0解析 依题意知,点(3,1)在圆(x-1)2+y2=r2上,且为切点.∵圆心(1,0)与切点(3,1)连线的斜率为,所以切线的斜率k=-2.故过点(3,1)的切线方程为y-1=-2(x-3),即2x+y-7=0.\n答案 B4.(2020·全国Ⅲ卷)点(0,-1)到直线y=k(x+1)距离的最大值为( )A.1B.C.D.2解析 设点A(0,-1),直线l:y=k(x+1),由l恒过定点B(-1,0),当AB⊥l时,点A(0,-1)到直线y=k(x+1)的距离最大,最大值为.故选B.答案 B5.(2020·合肥调研)已知点P为圆C:(x-1)2+(y-2)2=4上一点,A(0,-6),B(4,0),则|+|的最大值为( )A.+2B.+4C.2+4D.2+2解析 取AB中点D(2,-3),则+=2,|+|=|2|=2||,又由题意知,圆C的圆心C(1,2),半径为2,||的最大值为圆心C(1,2)到D(2,-3)的距离d再加半径r,又d==,∴d+r=+2,∴2||的最大值为2+4,即|+|的最大值为2+4.答案 C6.(多选题)集合A={(x,y)|x2+y2=4},B={(x,y)|(x-3)2+(y-4)2=r2},其中r>0,若A∩B中有且仅有一个元素,则r的值是( )A.3B.5C.7D.9解析 圆x2+y2=4的圆心是O(0,0),半径为R=2,圆(x-3)2+(y-4)2=r2的圆心是C(3,4),半径为r,|OC|=5,当2+r=5,r=3时,两圆外切;当|r-2|=5,r=7时,两圆内切,它们都只有一个公共点,即集合A∩B只有一个元素.故选AC.答案 AC7.(多选题)已知点A是直线l:x+y-=0上一定点,点P,Q是圆x2+y2=1上的动点,若∠PAQ的最大值为90°,则点A的坐标可以是( )A.(0,)B.(1,-1)\nC.(,0)D.(-1,1)解析 如图所示,坐标原点O到直线l:x+y-=0的距离d==1,则直线l与圆x2+y2=1相切,由图可知,当AP,AQ均为圆x2+y2=1的切线时,∠PAQ取得最大值,连接OP,OQ,由于∠PAQ的最大值为90°,且∠APO=∠AQO=90°,|OP|=|OQ|=1,则四边形APOQ为正方形,所以|OA|=|OP|=.设A(t,-t),由两点间的距离公式得|OA|==,整理得2t2-2t=0,解得t=0或t=,因此,点A的坐标为(0,)或(,0).故选AC.答案 AC8.(多选题)已知圆C1:x2+y2=r2与圆C2:(x-a)2+(y-b)2=r2(r>0)交于不同的两点A(x1,y1),B(x2,y2),则下列结论正确的是( )A.a(x1-x2)+b(y1-y2)=0B.2ax1+2by1=a2+b2C.x1+x2=aD.y1+y2=2b解析 圆C2的方程为x2+y2-2ax-2by+a2+b2-r2=0,两圆的方程相减,可得直线AB的方程为2ax+2by-a2-b2=0,即得2ax+2by=a2+b2,分别把A(x1,y1),B(x2,y2)两点的坐标代入,可得2ax1+2by1=a2+b2,2ax2+2by2=a2+b2,两式相减可得2a(x1-x2)+2b(y1-y2)=0,即a(x1-x2)+b(y1-y2)=0,所以选项A、B均正确;由圆的性质可得,线段AB与线段C1C2互相平分,所以x1+x2=a,y1+y2=b,所以选项C正确,选项D不正确.答案 ABC二、填空题9.(2019·北京卷)设抛物线y2=4x的焦点为F,准线为l.则以F为圆心,且与l相切的圆的方程为________.解析 抛物线y2=4x的焦点F的坐标为(1,0),准线l为直线x=-1,所求的圆以F为圆心,且与准线l相切,故圆的半径r=2.\n所以圆的方程为(x-1)2+y2=4.答案 (x-1)2+y2=410.已知圆C的圆心在x轴的正半轴上,点M(0,)在圆C上,且圆心到直线2x-y=0的距离为,则圆C的方程为________.解析 ∵圆C的圆心在x轴的正半轴上,设C(a,0),且a>0.则圆心C到直线2x-y=0的距离d==,解得a=2.∴圆C的半径r=|CM|==3,因此圆C的方程为(x-2)2+y2=9.答案 (x-2)2+y2=911.已知圆C的方程是x2+y2-8x-2y+8=0,直线l:y=a(x-3)被圆C截得的弦长最短时,直线l方程为________________.解析 圆C的标准方程为(x-4)2+(y-1)2=9,∴圆C的圆心C(4,1),半径r=3.又直线l:y=a(x-3)过定点P(3,0),则当直线l与直线CP垂直时,被圆C截得的弦长最短.因此a·kCP=a·=-1,∴a=-1.故所求直线l的方程为y=-(x-3),即x+y-3=0.答案 x+y-3=012.(2020·衡水中学检测)已知直线Ax+By+C=0(其中A2+B2=C2,C≠0)与圆x2+y2=6交于点M,N,O是坐标原点,则|MN|=________,·=________.解析 由于A2+B2=C2,且C≠0,∴圆心(0,0)到直线Ax+By+C=0的距离d==1.所以|MN|=2=2=2.设向量,的夹角为θ,则cos(π-θ)==,所以cosθ=-,所以·=||||cosθ=×2×=-10.答案 2 -10B级 能力突破13.直线x+y+2=0分别与x轴、y轴交于A,B两点,点P在圆(x-2)2+y2=2上,则△ABP面积的取值范围是( )A.[2,6]B.[4,8]C.[,3]D.[2,3]\n解析 由题意知圆心的坐标为(2,0),半径r=,圆心到直线x+y+2=0的距离d==2,所以圆上的点到直线的最大距离是d+r=3,最小距离是d-r=.易知A(-2,0),B(0,-2),所以|AB|=2,所以2≤S△ABP≤6.答案 A14.如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2-12x-14y+60=0及其上一点A(2,4).(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B,C两点,且|BC|=|OA|,求直线l的方程.解 圆M的标准方程为(x-6)2+(y-7)2=25,所以圆心M(6,7),半径为5,(1)由圆心N在直线x=6上,可设N(6,y0),因为圆N与x轴相切,与圆M外切,所以0<y0<7,圆N的半径为y0,从而7-y0=5+y0,解得y0=1.因此,圆N的标准方程为(x-6)2+(y-1)2=1.(2)因为直线l∥OA,所以直线l的斜率为=2.设直线l的方程为y=2x+m,即2x-y+m=0,则圆心M到直线l的距离d==.\n因为|BC|=|OA|==2,又|MC|2=d2+,所以25=+5,解得m=5或m=-15.故直线l的方程为2x-y+5=0或2x-y-15=0.
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
2023高考数学二轮复习专题练三核心热点突破专题四概率与统计第1讲统计与统计案例含解析202303112179
2023高考数学二轮复习专题练三核心热点突破专题六函数与导数第4讲导数的综合应用含解析202303112171
2023高考数学二轮复习专题练三核心热点突破专题六函数与导数第1讲函数图象与性质含解析202303112168
2023高考数学二轮复习专题练三核心热点突破专题五解析几何规范答题示范课_解析几何解答题含解析202303112186
2023高考数学二轮复习专题练三核心热点突破专题五解析几何第3讲圆锥曲线中的热点问题含解析202303112185
2023高考数学二轮复习专题练三核心热点突破专题五解析几何第2讲圆锥曲线的方程与性质含解析202303112184
2023高考数学二轮复习专题练三核心热点突破专题五解析几何专题检测卷五解析几何含解析202303112187
2023高考数学二轮复习专题练三核心热点突破专题二数列第2讲数列求和及综合问题含解析202303112165
2023高考数学二轮复习专题练三核心热点突破专题二数列第1讲等差数列与等比数列含解析202303112164
2023高考数学二轮复习专题练三核心热点突破专题三立体几何第2讲空间中的平行与垂直含解析202303112175
文档下载
收藏
所属:
高考 - 二轮专题
发布时间:2022-08-25 22:20:58
页数:15
价格:¥3
大小:313.00 KB
文章作者:U-336598
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划