首页

【红对勾】(新课标)2023高考数学大一轮复习 6.7数学归纳法课时作业 理.DOC

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/6

2/6

剩余4页未读,查看更多内容需下载

课时作业43 数学归纳法一、选择题1.用数学归纳法证明“1+a+a2+…+an=,a≠1,n∈N*”,在验证n=1时,左边是(  )A.1B.1+aC.1+a+a2D.1+a+a2+a3解析:当n=1时,代入原式有左边=1+a.故选B.答案:B2.如果命题p(n)对n=k成立,则它对n=k+2也成立.若p(n)对n=2成立,则下列结论正确的是(  )A.p(n)对所有正整数n都成立B.p(n)对所有正偶数n都成立C.p(n)对所有正奇数n都成立D.p(n)对所有自然数n都成立解析:归纳奠基是:n=2成立.归纳递推是:n=k成立,则对n=k+2成立.∴p(n)对所有正偶数n都成立.答案:B3.数列{an}中,已知a1=1,当n≥2时,an=an-1+2n-1,依次计算a2,a3,a4后,猜想an的表达式是(  )A.an=3n-2B.an=n2C.an=3n-1D.an=4n-3解析:求得a2=4,a3=9,a4=16,猜想an=n2.答案:B4.用数学归纳法证明“n3+(n+1)3+(n+2)3(n∈N*)能被9整除”,要利用归纳假设证n=k+1时的情况,只需展开(  )A.(k+3)3B.(k+2)3C.(k+1)3D.(k+1)3+(k+2)3解析:假设当n=k时,原式能被9整除,即k3+(k+1)3+(k+2)3能被9整除.6\n当n=k+1时,(k+1)3+(k+2)3+(k+3)3为了能用上面的归纳假设,只需将(k+3)3展开,让其出现k3即可.答案:A5.用数学归纳法证明1+++…+>(n∈N*)成立,其初始值至少应取(  )A.7B.8C.9D.10解析:左边=1+++…+==2-,代入验证可知n的最小值是8.故选B.答案:B6.用数学归纳法证明:“(n+1)·(n+2)·…·(n+n)=2n·1·3·…·(2n-1)”,从“k到k+1”左端需增乘的代数式为(  )A.2k+1B.2(2k+1)C.D.解析:n=k+1时,左端为(k+2)(k+3)…[(k+1)+(k-1)][(k+1)+k][(k+1)+(k+1)]=(k+2)(k+3)…(k+k)(2k+1)(2k+2)=(k+1)(k+2)…(k+k)[2(2k+1)],∴应增乘2(2k+1).答案:B二、填空题7.使|n2-5n+5|=1不成立的最小的正整数是__________.解析:n=1,2,3,4代入验证成立,而n=5验证不成立.答案:58.用数学归纳法证明12+22+…+(n-1)2+n2+(n-1)2+…+22+12=时,由n=k的假设到证明n=k+1时,等式左边应添加的式子是________.答案:(k+1)2+k29.已知整数对的序列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…,则第60个数对是__________.解析:本题规律:2=1+1;3=1+2=2+1;4=1+3=2+2=3+1;5=1+4=2+3=3+2=4+1;…;6\n一个整数n所拥有数对为(n-1)对.设1+2+3+…+(n-1)=60,∴=60,∴n=11时还多5对数,且这5对数和都为12,12=1+11=2+10=3+9=4+8=5+7,∴第60个数对为(5,7).答案:(5,7)三、解答题10.用数学归纳法证明下面的等式:12-22+32-42+…+(-1)n-1·n2=(-1)n-1.证明:(1)当n=1时,左边=12=1,右边=(-1)0·=1,∴原等式成立.(2)假设n=k(k∈N*,k≥1)时,等式成立,即有12-22+32-42+…+(-1)k-1·k2=(-1)k-1.那么,当n=k+1时,则有12-22+32-42+…+(-1)k-1·k2+(-1)k·(k+1)2=(-1)k-1+(-1)k·(k+1)2=(-1)k·[-k+2(k+1)]=(-1)k.∴n=k+1时,等式也成立,由(1)(2)知对任意n∈N*,有12-22+32-42+…+(-1)n-1·n2=(-1)n-1.11.在数列{an},{bn}中,a1=2,b1=4,且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列(n∈N*).(1)求a2,a3,a4及b2,b3,b4,由此猜测{an},{bn}的通项公式,并证明你的结论.(2)证明:++…+<.解:(1)由条件得2bn=an+an+1,a=bnbn+1.6\n由此可得a2=6,b2=9,a3=12,b3=16,a4=20,b4=25.猜测an=n(n+1)(n∈N*),bn=(n+1)2(n∈N*).用数学归纳法证明:①当n=1时,由上可得结论成立.②假设当n=k(k≥1,k∈N*)时,结论成立,即ak=k(k+1),bk=(k+1)2,那么当n=k+1时,ak+1=2bk-ak=2(k+1)2-k(k+1)=(k+1)(k+2),bk+1===(k+2)2,所以当n=k+1时,结论也成立.由①②,可知an=n(n+1),bn=(n+1)2对一切正整数都成立.(2)①当n=1时,=<.②当n≥2时,由(1)知an+bn=n(n+1)+(n+1)2=(n+1)(2n+1)>2(n+1)n.所以<.故++…+<+=+=+<+=.由①②可知原不等式成立.1.已知点Pn(an,bn)满足an+1=an·bn+1,bn+1=(n∈N*),且点P1的坐标为(1,-1).(1)求过点P1,P2的直线l的方程;(2)试用数学归纳法证明:对于n∈N*,点Pn都在(1)中的直线l上.解:(1)由题意得a1=1,b1=-1,6\nb2==,a2=1×=,∴P2.∴直线l的方程为=,即2x+y=1.(2)证明:①当n=1时,2a1+b1=2×1+(-1)=1成立.②假设n=k(k≥1且k∈N*)时,2ak+bk=1成立.则2ak+1+bk+1=2ak·bk+1+bk+1=·(2ak+1)===1,∴当n=k+1时,2ak+1+bk+1=1也成立.由①②知,对于n∈N*,都有2an+bn=1,即点Pn在直线l上.2.(2014·重庆卷)设a1=1,an+1=+b(n∈N*).(1)若b=1,求a2,a3及数列{an}的通项公式;(2)若b=-1,问:是否存在实数c使得a2n<c<a2n+1对所有n∈N*成立?证明你的结论.解:(1)解法1:a2=2,a3=+1.再由题设条件知(an+1-1)2=(an-1)2+1.从而{(an-1)2}是首项为0,公差为1的等差数列,故(an-1)2=n-1,即an=+1 (n∈N*).解法2:a2=2,a3=+1.可写为a1=+1,a2=+1,a3=+1.因此猜想an=+1.下用数学归纳法证明上式:当n=1时结论显然成立.假设n=k时结论成立,即ak=+1.则ak+1=+1=+1=+1.这就是说,当n=k+1时结论成立.所以an=+1 (n∈N*).(2)设f(x)=-1,则an+1=f(an).令c=f(c),即c=-1,解得c=.下用数学归纳法证明加强命题a2n<c<a2n+1<1.6\n当n=1时,a2=f(1)=0,a3=f(0)=-1,所以a2<<a3<1,结论成立.假设n=k时结论成立,即a2k<c<a2k+1<1.易知f(x)在(-∞,1]上为减函数,从而c=f(c)>f(a2k+1)>f(1)=a2,即1>c>a2k+2>a2.再由f(x)在(-∞,1]上为减函数得c=f(c)<f(a2k+2)<f(a2)=a3<1.故c<a2k+3<1,因此a2(k+1)<c<a2(k+1)+1<1.这就是说,当n=k+1时结论成立.综上,符合条件的c存在,其中一个值为c=.6

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 17:48:15 页数:6
价格:¥3 大小:81.00 KB
文章作者:U-336598

推荐特供

MORE