首页

全国版2023高考数学二轮复习专题检测十三概率文含解析20230325155

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/12

2/12

剩余10页未读,查看更多内容需下载

专题检测(十三)概率A组——“6+3+3”考点落实练一、选择题1.(2019·全国卷Ⅲ)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是(  )A.        B.C.D.解析:选D 设两位男同学分别为A,B,两位女同学分别为a,b,则用“树形图”表示四位同学排成一列所有可能的结果如图所示.由图知,共有24种等可能的结果,其中两位女同学相邻的结果(画“√”的情况)共有12种,故所求概率为=.故选D.2.已知定义在区间[-3,3]上的函数f(x)=2x+m满足f(2)=6,在[-3,3]上任取一个实数x,则使得f(x)的值不小于4的概率为(  )A.B.C.D.解析:选B ∵f(2)=6,∴22+m=6,解得m=2.由f(x)≥4,得2x+2≥4,即x≥1,而x∈[-3,3],故根据几何概型的概率计算公式,得f(x)的值不小于4的概率P==.故选B.3.(2019·广东六校第一次联考)在区间[-π,π]上随机取两个实数a,b,记向量m=(a,4b),n=(4a,b),则m·n≥4π2的概率为(  )A.1-B.1-\nC.1-D.1-解析:选B 在区间[-π,π]上随机取两个实数a,b,则点(a,b)在如图所示的正方形内部及其边界上.因为m·n=4a2+4b2≥4π2,所以a2+b2≥π2,满足条件的点(a,b)在以原点为圆心,π为半径的圆外部(含边界),且在正方形内(含边界),如图中阴影部分所示,所以m·n≥4π2的概率P==1-,故选B.4.(2019·成都第一次诊断性检测)齐王有上等、中等、下等马各一匹;田忌也有上等、中等、下等马各一匹.田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.现从双方的马匹中随机各选一匹进行一场比赛,若有优势的马一定获胜,则齐王的马获胜的概率为(  )A.B.C.D.解析:选C 将齐王的上等、中等、下等马分别记为a1,a2,a3,田忌的上等、中等、下等马分别记为b1,b2,b3,则从双方的马匹中随机各选一匹进行比赛,其对阵情况有a1b1,a1b2,a1b3,a2b1,a2b2,a2b3,a3b1,a3b2,a3b3,共9种,其中齐王的马获胜的对阵情况有a1b1,a1b2,a1b3,a2b2,a2b3,a3b3,共6种,所以齐王的马获胜的概率P==,故选C.5.从4名男生和2名女生中任选3人参加某项活动,则所选的3人中女生人数不超过1的概率是(  )A.0.8         B.0.6C.0.4D.0.2解析:选A 设事件Q为“所选3人中女生人数不超过1”,事件M为“所选3人中女生人数为1”,事件N为“所选3人中女生人数为0”,则事件M,N是互斥事件.4名男生分别记为1,2,3,4;2名女生分别记为a,b.从4名男生和2名女生中任选3人有20种不同的结果,分别为{1,2,3},{1,2,4},{1,2,a},{1,2,b},{1,3,4},{1,3,a},{1,3,b},{1,4,a},{1,4,b},{1,a,b},{2,3,4},{2,3,a},{2,3,b},{2,4,a},{2,4,b},{2,a,b},{3,4,a},{3,4,b},{3,a,b},{4,a,b}.事件M所含的基本事件分别为{1,2,a},{1,2,b},{1,3,a},{1,3,b},{1,4,\na},{1,4,b},{2,3,a},{2,3,b},{2,4,a},{2,4,b},{3,4,a},{3,4,b},共12个,所以P(M)==;事件N所含的基本事件分别为{1,2,3},{1,2,4},{1,3,4},{2,3,4},共4个,所以P(N)==;所以事件Q的概率为P(Q)=P(M)+P(N)=+=0.8,故选A.6.如图(1)所示的风车是一种用纸折成的玩具.它用高粱秆、胶泥瓣儿和彩纸制成,是老北京的象征,百姓称它吉祥轮.风车现已成为北京春节庙会和节俗活动的文化标志物之一.图(2)是用8个等腰直角三角形组成的风车平面示意图,若在示意图内随机取一点,则此点取自阴影部分的概率为(  )A.B.C.D.解析:选B 设白色的等腰直角三角形的斜边长为2,则白色的等腰直角三角形直角边的长为,所以白色部分的面积为S1=4×××=4,易知阴影部分中的等腰直角三角形的腰长为1,所以阴影部分的面积为S2=4××1×1=2,由几何概型的概率公式,可得此点取自阴影部分的概率为P===.二、填空题7.一个三位自然数的百位、十位、个位上的数字依次为a,b,c,当且仅当其中两个数字的和等于第三个数字时称为“有缘数”(如213,134等).若a,b,c∈{1,2,3,4},且a,b,c互不相同,则这个三位数为“有缘数”的概率是________.解析:由1,2,3组成的三位自然数可能为123,132,213,231,312,321,共6个;同理,由1,2,4组成的三位自然数有6个,由1,3,4组成的三位自然数有6个,由2,3,4组成的三位自然数有6个,共有6+6+6+6=24个三位自然数.由1,2,3或1,3,4组成的三位自然数为“有缘数”,共12个,所以三位数为“有缘数”的概率为=.\n答案:8.甲、乙两人在5次综合测评中成绩的茎叶图如图所示,其中一个数字被污损,记甲、乙的平均成绩分别为x甲,x乙,则x甲>x乙的概率是________.解析:设被污损的数字为x,由茎叶图知x乙=90,x甲=89+,污损处可取数字0,1,2,…,9,共10种,而x甲>x乙时,89+>90,x∈N,污损处对应的数字有6,7,8,9,共4种,故x甲>x乙的概率为=.答案:9.正方体ABCDA1B1C1D1的棱长为a,在正方体内随机取一点M,则点M落在三棱锥B1A1BC1内的概率为________.解析:因为正方体ABCDA1B1C1D1的棱长为a,所以三棱锥B1A1BC1的体积··a·a·a=a3,正方体ABCDA1B1C1D1的体积为a3,所以在正方体内随机取一点M,则点M落在三棱锥B1A1BC1内的概率为=.答案:三、解答题10.(2019·天津高考)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(1)应从老、中、青员工中分别抽取多少人?(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A,B,C,D,E,F.享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.员工ABCDEF\n项目   子女教育○○×○×○继续教育××○×○○大病医疗×××○××住房贷款利息○○××○○住房租金××○×××赡养老人○○×××○①试用所给字母列举出所有可能的抽取结果;②设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.解:(1)由已知得老、中、青员工人数之比为6∶9∶10,由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人、9人、10人.(2)①从已知的6人中随机抽取2人的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F},{C,D},{C,E},{C,F},{D,E},{D,F},{E,F},共15种.②由表格知,符合题意的所有结果为{A,B},{A,D},{A,E},{A,F},{B,D},{B,E},{B,F},{C,E},{C,F},{D,F},{E,F},共11种.所以事件M发生的概率P(M)=.11.(2019·安徽五校联盟第二次质检)一汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量(单位:辆)如表:A类轿车B类轿车C类轿车舒适型100150z标准型300450600按类用分层抽样的方法从这个月生产的轿车中抽取50辆,其中有A类轿车10辆.(1)求z的值;(2)用分层抽样的方法从C类轿车中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(3)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4\n,8.6,9.2,9.6,8.7,9.3,9.0,8.2,把这8辆轿车的得分看成一个总体,从中任取一个数xi(1≤i≤8,i∈N),设样本平均数为x,求|xi-x|≤0.5的概率.解:(1)设该厂这个月共生产轿车n辆,由题意得=,所以n=2000,则z=2000-(100+300)-(150+450)-600=400.(2)设所抽样本中有a辆舒适型轿车,由题意得=,得a=2,所以抽取的容量为5的样本中,有2辆舒适型轿车,3辆标准型轿车.用A1,A2分别表示2辆舒适型轿车,用B1,B2,B3分别表示3辆标准型轿车,用E表示事件“在该样本中任取2辆,至少有1辆舒适型轿车”.从该样本中任取2辆包含的基本事件有(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(B1,B2),(B1,B3),(B2,B3),共10个,其中事件E包含的基本事件有(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),共7个.故P(E)=,即所求的概率为.(3)样本平均数x=×(9.4+8.6+9.2+9.6+8.7+9.3+9.0+8.2)=9.设D表示事件“从样本中任取一个数xi(1≤i≤8,i∈N),|xi-x|≤0.5”,则从样本中任取一个数有8个基本事件,事件D包括的基本事件有9.4,8.6,9.2,8.7,9.3,9.0,共6个.所以P(D)==,即所求的概率为.12.已知二次函数f(x)=ax2-4bx+2.(1)任取a∈{1,2,3},b∈{-1,1,2,3,4},记“f(x)在区间[1,+∞)上是增函数”为事件A,求A发生的概率.(2)任取(a,b)∈{(a,b)|a+4b-6≤0,a>0,b>0},记“关于x的方程f(x)=0有一个大于1的根和一个小于1的根”为事件B,求B发生的概率.解:(1)因为a有3种取法,b有5种取法,则对应的函数有3×5=15个.因为函数f(x)的图象关于直线x=对称,若事件A发生,则a>0且≤1.数对(a,b)的取值为(1,-1),(2,-1),(2,1),(3,-1),(3,1)共5种.所以P(A)==.(2)集合{(a,b)|a+4b-6≤0,a>0,b>0}对应的平面区域为Rt△AOB,如图,其中点A(6,\n0),B,则△AOB的面积为××6=.若事件B发生,则f(1)<0,即a-4b+2<0.所以事件B对应的平面区域为△BCD.由得交点坐标为D(2,1).又C,则△BCD的面积为××2=1.所以P(B)==.B组——大题专攻强化练1.为了从某校甲、乙两名学生中选拔出一名学生参加全国中学生奥林匹克数学竞赛,现对这两名学生以往的若干次数学竞赛成绩进行分析,数据如下:(1)请你从这两名学生的数学成绩的平均水平和稳定性角度进行分析,判断应选择哪名学生参加竞赛;(2)请你通过该组数据中甲、乙两名学生的数学成绩在x-s与x+s之间的概率大小进行选择,请给出你的选择结果;(3)按照第(1)问的选取标准,为了迎接竞赛,学校决定对所选学生以往的若干次数学竞赛试卷进行分析,每位老师负责分析其中的两张试卷,求陈老师为该生分析的数学试卷分数都在88分以上的概率.参考数据:≈8.2,≈8.0,≈7.9,≈8.7.解:(1)平均值:x甲==82.4,x乙==82.4,\nx甲=x乙.样本方差:s=[(72-82.4)2+(74-82.4)2+…+(95-82.4)2+(96-82.4)2]=67.44,s=[(70-82.4)2+(71-82.4)2+…+(92-82.4)2+(93-82.4)2]=75.44,由于s<s,所以甲同学的成绩相对稳定,因此派甲同学参加比赛.(2)由于x甲=x乙=82.4,s甲==≈8.2,s乙==≈8.7,所以x甲+s甲=90.6,x甲-s甲=74.2,在x甲-s甲与x甲+s甲之间的成绩有75,76,80,82,85,89,所以P甲==,x乙+s乙=91.1,x乙-s乙=73.7,在x乙-s乙与x乙+s乙之间的成绩有76,85,87,88,90,所以P乙==,因为>,所以派甲同学去参加比赛.(3)从10份试卷中任意抽取2份共有45种取法,2份试卷的分数均在88分以上的有(89,95),(89,96),(95,96),共3种,故陈老师为该生分析的数学试卷分数都在88分以上的概率为=.2.(2019·济南市学习质量评估)某企业生产了一种新产品,在推广期邀请了100位客户试用该产品,每人一台.试用一个月之后进行回访,由客户先对产品性能作出“满意”或“不满意”的评价,再让客户决定是否购买该试用产品(不购买则可以免费退货,购买则仅需付成本价).经统计,决定退货的客户人数占总人数的一半,“对性能满意”的客户比“对性能不满意”的客户多10人,“对性能不满意”的客户中恰有选择了退货.(1)请完成下面的2×2列联表,并判断是否有99%的把握认为“客户购买产品与对产品性能满意之间有关”?对性能满意对性能不满意总计购买产品不购买产品总计(2)该企业为了改进产品性能,现从“对性能不满意”的客户中按是否购买产品进行分层抽样,随机抽取6位客户进行座谈.座谈后安排了抽奖环节,共有4张奖券,奖券上分别印有200元、400元、600元和800元字样,抽到奖券可获得相应奖金.6位客户有放回地进行抽取,每人随机抽取一张奖券,求6位客户中购买产品的客户人均所得奖金不少于500元的概率.附:K2=,其中n=a+b+c+d,\nP(K2≥k0)0.1500.1000.0500.0250.010k02.0722.7063.8415.0246.635解:(1)设“对性能不满意”的客户中购买产品的人数为x,则不购买产品的人数为2x,由此并结合题意可列出表:对性能满意对性能不满意总计购买产品x50不购买产品2x50总计3x+103x100由表可得3x+10+3x=100,所以x=15.完成2×2列联表为对性能满意对性能不满意总计购买产品351550不购买产品203050总计5545100所以K2==≈9.091>6.635,所以有99%的把握认为“客户购买产品与对产品性能满意之间有关”.(2)由题意得,参加座谈的6位客户中购买产品的人数为2,退货的人数为4.“6位客户中购买产品的客户抽取奖券”包含的基本事件有(200,200),(200,400),(200,600),(200,800),(400,200),(400,400),(400,600),(400,800),(600,200),(600,400),(600,600),(600,800),(800,200),(800,400),(800,600),(800,800),共16个.设事件A为“6位客户中购买产品的客户人均所得奖金不少于500元”,则事件A包含的基本事件有(200,800),(400,600),(400,800),(600,400),(600,600),(600,800),(800,200),(800,400),(800,600),(800,800),共10个,则P(A)==.\n所以6位客户中购买产品的客户人均所得奖金不少于500元的概率是.3.(2019·江西省五校协作体试题)某市组织高三全体学生参加计算机操作比赛,成绩为1至10分,随机调阅了A,B两所学校各60名学生的成绩,得到样本数据如下:A校样本数据条形图B校样本数据统计表成绩/分12345678910人数/个000912219630(1)计算两校样本数据的均值和方差,并根据所得数据进行比较;(2)从A校样本数据中成绩分别为7分、8分和9分的学生中按分层抽样方法抽取6人,若从抽取的6人中任选2人参加更高一级的比赛,求这2人成绩之和大于或等于15分的概率.解:(1)从A校样本数据的条形图可知,成绩为4分、5分、6分、7分、8分、9分的学生分别有6人、15人、21人、12人、3人、3人.A校样本数据的均值为xA==6(分),A校样本数据的方差为s=×[6×(4-6)2+15×(5-6)2+21×(6-6)2+12×(7-6)2+3×(8-6)2+3×(9-6)2]=1.5.从B校样本数据统计表可知,B校样本数据的均值为xB==6(分),B校样本数据的方差为s=×[9×(4-6)2+12×(5-6)2+21×(6-6)2+9×(7-6)2+6×(8-6)2+3×(9-6)2]=1.8.因为xA=xB,所以两校学生的计算机成绩平均分相同,又s<s,所以A校学生的计算机成绩比较集中,总体得分情况比B校好.\n(2)依题意,从A校样本数据中成绩为7分的学生中应抽取的人数为×12=4,分别设为a,b,c,d;从成绩为8分的学生中应抽取的人数为×3=1,设为e;从成绩为9分的学生中应抽取的人数为×3=1,设为f.所有基本事件有ab,ac,ad,ae,af,bc,bd,be,bf,cd,ce,cf,de,df,ef,共15个,其中满足条件的基本事件有ae,af,be,bf,ce,cf,de,df,ef,共9个,所以从抽取的6人中任选2人参加更高一级的比赛,这2人成绩之和大于或等于15分的概率P==.4.(2019·湖南省湘东六校联考)某企业为了参加上海的进博会,大力研发新产品,为了对新研发的一批产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组销售数据(xi,yi)(i=1,2,…,6),如表所示:试销单价x/元456789产品销量y/件q8483807568已知y=i=80.(1)求q的值;(2)已知变量x,y具有线性相关关系,求产品销量y(件)关于试销单价x(元)的线性回归方程y=x+;(3)用i表示用正确的线性回归方程得到的与xi对应的产品销量的估计值,当|i-yi|≤1时,将销售数据(xi,yi)称为一个“好数据”,现从6个销售数据中任取2个,求抽取的2个销售数据中至少有一个是“好数据”的概率.解:(1)由y=i=80,\n得=80,解得q=90.所以==-4,=80+4×6.5=106,所以所求的线性回归方程为=-4x+106.(3)由(2)知,当x1=4时,1=90;当x2=5时,2=86;当x3=6时,3=82;当x4=7时,4=78;当x5=8时,5=74;当x6=9时,6=70.与销售数据对比可知满足|i-yi|≤1(i=1,2,…,6)的共有3个:(4,90),(6,83),(8,75).从6个销售数据中任取2个的所有可能结果有=15(种),其中2个销售数据中至少有一个是“好数据”的结果有3×3+3=12(种),于是抽取的2个销售数据中至少有一个是“好数据”的概率为=.

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 21:57:52 页数:12
价格:¥3 大小:329.50 KB
文章作者:U-336598

推荐特供

MORE