首页

宜宾专版2022年中考数学总复习第1编教材知识梳理篇第4章图形的初步认识与三角形第15讲等腰三角形与直角三角形精练试题

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/4

2/4

剩余2页未读,查看更多内容需下载

第十五讲 等腰三角形与直角三角形1.(2022台州中考)如图,已知等腰三角形ABC,AB=AC,若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是( C )A.AE=EC     B.AE=BEC.∠EBC=∠BACD.∠EBC=∠ABE,(第1题图))   ,(第2题图))2.(2022烟台中考)某城市几条道路的位置关系如图所示,已知AB∥CD,AE与AB的夹角为48°,若CF与EF的长度相等,则∠C的度数为( D )A.48°   B.40°   C.30°    D.24°3.(2022大庆中考)如图,△ABD是以BD为斜边的等腰直角三角形,△BCD中,∠DBC=90°,∠BCD=60°,DC中点为E,AD与BE的延长线交于点F,则∠AFB的度数为( B )A.30°B.15°C.45°D.25°,(第3题图))   ,(第5题图))4.(安顺中考)已知实数x,y满足|x-4|+=0,则以x,y的值为两边长的等腰三角形的周长是( B )A.20或16     B.20C.16D.以上答案均不对5.(2022大连中考)如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,点E是AB的中点,CD=DE=a,则AB的长为( B )A.2a   B.2a   C.3a   D.a6.(武汉中考)平面直角坐标系中,已知A(2,2),B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是( A )A.5B.6C.7D.87.(2022聊城中考)如图是由8个全等的矩形组成的大正方形,4\n线段AB的端点都在小矩形的顶点上.如果点P是某个小矩形的顶点,连结PA,PB,那么使△ABP为等腰直角三角形的点P的个数是( B )A.2B.3C.4D.58.(内江中考)已知等边三角形的边长为3,点P为等边三角形内任意一点,则点P到三边的距离之和为( B )A.      B.C.D.不能确定9.(2022株洲中考)如图所示,在△ABC中,∠B=__25°__.,(第9题图))   ,(第10题图))10.(泰州中考)如图,已知直线l1∥l2,将等边三角形如图放置,若α=40°,则β等于__20°__.11.(2022常德中考)如图,已知Rt△ABE中,∠A=90°,∠B=60°,BE=10,D是线段AE上的一动点,过D作CD交BE于C,并使得∠CDE=30°,则CD长度的取值范围是__0<CD≤5__.,(第11题图))   ,(第12题图))12.(牡丹江中考)如图,在△ABC中,AB=AC=6,AB的垂直平分线交AB于点E,交BC于点D,连结AD,若AD=4,则DC=__5__.13.(2022淄博中考)在边长为4的等边三角形ABC中,D为BC边上的任意一点,过点D分别作DE⊥AB,DF⊥AC,垂足分别为E,F,则DE+DF=__2__.14.(常州中考)如图,已知△ABC中,AB=AC,BD,CE是高,BD与CE相交于点O.(1)求证:OB=OC;(2)若∠ABC=50°,求∠BOC的度数.解:(1)∵AB=AC,∴∠ABC=∠ACB.∵BD,CE是△ABC的两条高线,∴∠BEC=∠BDC=90°,∴△BEC≌△CDB,∴∠DBC=∠ECB,BE=CD.4\n在△BOE和△COD中,∵∠BOE=∠COD,BE=CD,∠BEC=∠CDB=90°,∴△BOE≌△COD,∴OB=OC;(2)∵∠ABC=50°,AB=AC,∴∠A=180°-2×50°=80°.∵∠DOE+∠A=180°,∴∠BOC=∠DOE=180°-80°=100°.15.(宁夏中考)在等边△ABC中,点D,E分别在边BC,AC上,若CD=2,过点D作DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,求EF的长.解:∵△ABC是等边三角形,∴∠B=∠ACB=60°.∵DE∥AB,∴∠EDC=∠B=60°,∴△EDC是等边三角形,∴DE=DC=2.在Rt△DEF中,∵∠DEF=90°,DE=2,∠EDC=60°,∴EF=tan60°·DE=2.16.(2022郴州中考)如图①,△ABC是边长为4cm的等边三角形,边AB在射线OM上,且OA=6cm,点D从O点出发,沿OM的方向以1cm/s的速度运动,当D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连结DE.(1)求证:△CDE是等边三角形;(2)如图②,当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE的最小周长;若不存在,请说明理由;(3)如图③,当点D在射线OM上运动时,是否存在以D,E,B为顶点的三角形是直角三角形?若存在,求出此时t的值;若不存在,请说明理由.解:(1)∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)存在,当6<t<10时,由旋转的性质得,BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE,由(1)知,△CDE是等边三角形,4\n∴DE=CD,∴C△DBE=CD+4,由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD=2cm,∴△BDE的最小周长=CD+4=2+4;(3)存在,①∵当点D与点B重合时,D,B,E不能构成三角形,∴当点D与点B重合时,不符合题意;②当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,∴∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEB=60°,∴∠CEB=30°.∵∠CEB=∠CDA,∴∠CDA=30°.∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA-DA=6-4=2,∴t=2÷1=2s;③当6<t<10s时,由∠DBE=120°>90°,∴此时不存在;④当t>10s时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14cm,∴t=14÷1=14s,综上所述,当t=2或14s时,以D,E,B为顶点的三角形是直角三角形.17.(六盘水中考)如图,已知AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4…,若∠A=70°,则∠An-1AnBn-1的度数为( C )A.   B.   C.   D.4

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 20:42:26 页数:4
价格:¥3 大小:104.61 KB
文章作者:U-336598

推荐特供

MORE