首页

山东省德州市2022年中考数学二模试卷(解析版)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/22

2/22

剩余20页未读,查看更多内容需下载

山东省德州市2022年中考二模数学试卷 一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.(3分)下列四个数中,是负数的是(  ) A.|﹣2|B.(﹣2)2C.﹣D.考点:实数的运算;正数和负数专题:计算题.分析:根据绝对值的性质,有理数的乘方的定义,算术平方根对各选项分析判断后利用排除法求解.解答:解:A、|﹣2|=2,是正数,故本选项错误;B、(﹣2)2=4,是正数,故本选项错误;C、﹣<0,是负数,故本选项正确;D、==2,是正数,故本选项错误.故选C.点评:本题考查了实数的运用,主要利用了绝对值的性质,有理数的乘方,以及算术平方根的定义,先化简是判断正、负数的关键. 2.(3分)如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=25°,则∠2的度数为(  ) A.20°B.25°C.30°D.35°考点:平行线的性质.3891921分析:首先过点B作BD∥l,由直线l∥m,可得BD∥l∥m,由两直线平行,内错角相等,即可求得答案∠4的度数,又由△ABC是含有45°角的三角板,即可求得∠3的度数,继而求得∠2的度数.解答:解:过点B作BD∥l,∵直线l∥m,∴BD∥l∥m,∴∠4=∠1=25°,∵∠ABC=45°,∴∠3=∠ABC﹣∠4=45°﹣25°=20°,∴∠2=∠3=20°.22\n故选A.点评:此题考查了平行线的性质.此题难度不大,注意辅助线的作法,注意掌握两直线平行,内错角相等定理的应用. 3.(3分)下列运算正确的是(  ) A.a3+a3=2a6B.a6÷a﹣3=a3C.a3•a3=2a3D.(﹣2a2)3=﹣8a6考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方专题:计算题.分析:根据同底数幂的除法法则:底数不变,指数相减,及同类项的合并进行各项的判断,继而可得出答案.解答:解:A、a3+a3=2a3,故本选项错误;B、a6÷a﹣3=a9,故本选项错误;C、a3•a3=a6,故本选项错误;D、(﹣2a2)3=﹣8a6,故本选项正确;故选D.点评:此题考查了同底数幂的除法运算,解答本题要求我们掌握合并同类项的法则、完全平方公式及同底数幂的除法法则. 4.(3分)下列四个几何体中,主视图与左视图相同的几何体有(  ) A.1个B.2个C.3个D.4个考点:简单几何体的三视图分析:分别分析四种几何体的三种视图,再找出有两个相同,而另一个不同的几何体.解答:解:①正方体的主视图与左视图都是正方形;②圆柱的主视图和左视图都是长方形;③圆锥主视图与左视图都是三角形;④球的主视图与左视图都是圆;故答案为:D.点评:本题考查了利用几何体判断三视图,培养了学生的观察能力和对几何体三种视图的空间想象能力.22\n 5.(3分)为了了解我市某学校“书香校园”的建设情况,检查组在该校随机抽取40名学生,调查了解他们一周阅读课外书籍的时间,并将调查结果绘制成如图所示的频数分布直方图(每小组的时间包含最小值,不包含最大值),根据图中信息估计该校学生一周课外阅读时间不少于4小时的人数占全校人数的百分数约等于(  ) A.50%B.55%C.60%D.65%考点:频数(率)分布直方图;用样本估计总体分析:先求出m的值,再用一周课外阅读时间不少于4小时的人数除以抽取的学生数即可.解答:解:m=40﹣5﹣11﹣4=20,该校学生一周课外阅读时间不少于4小时的人数占全校人数的百分数是:×100%=60%;故选C.点评:此题考查了频数分布直方图,解题的关键是求出m的值,找出一周课外阅读时间不少于4小时的人数. 6.(3分)楠溪江某景点门票价格:成人票每张70元,儿童票每张35元.小明买20张门票共花了1225元,设其中有x张成人票,y张儿童票,根据题意,下列方程组正确的是(  ) A.B. C.D.考点:由实际问题抽象出二元一次方程组专题:压轴题.分析:根据“小明买20张门票”可得方程:x+y=20;根据“成人票每张70元,儿童票每张35元,共花了1225元”可得方程:70x+35y=1225,把两个方程组合即可.解答:解:设其中有x张成人票,y张儿童票,根据题意得,,故选:B.点评:此题主要考查了由实际问题抽象出二元一次方程组,关键是弄清题意,把已知量和未知量联系起来,找出题目中的相等关系.22\n 7.(3分)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=,则阴影部分图形的面积为(  ) A.4πB.2πC.πD.考点:扇形面积的计算;垂径定理;圆周角定理;解直角三角形专题:数形结合.分析:连接OD,则根据垂径定理可得出CE=DE,继而将阴影部分的面积转化为扇形OBD的面积,代入扇形的面积公式求解即可.解答:解:连接OD.∵CD⊥AB,∴CE=DE=CD=(垂径定理),故S△OCE=S△ODE,即可得阴影部分的面积等于扇形OBD的面积,又∵∠CDB=30°,∴∠COB=60°(圆周角定理),∴OC=2,故S扇形OBD==,即阴影部分的面积为.故选D.点评:此题考查了扇形的面积计算、垂径定理及圆周角定理,解答本题关键是根据图形得出阴影部分的面积等于扇形OBD的面积,另外要熟记扇形的面积公式. 8.(3分)一个不透明的布袋中有分别标着数字1,2,3,4的四个乒乓球,现从袋中随机摸出两个乒乓球,则这两个乒乓球上的数字之和大于5的概率为(  ) A.B.C.D.22\n考点:列表法与树状图法分析:首先根据题意列出表格,然后由表格求得所有等可能的与这两个乒乓球上的数字之和大于5的情况,然后利用概率公式求解即可求得答案.解答:解:列表得:12341﹣2+1=33+1=44+1=521+2=3﹣3+2=54+2=631+3=42+3=5﹣4+3=741+4=52+4=63+4=7﹣∵共有12种等可能的结果,这两个乒乓球上的数字之和大于5的有4种情况,∴这两个乒乓球上的数字之和大于5的概率为:=.故选B.点评:此题考查了列表法与树状图法求概率的知识.注意列表法与树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比. 9.(3分)如图,在菱形纸片ABCD中,∠A=60°,将纸片折叠,点A、D分别落在点A′、D′处,且A′D′经过点B,EF为折叠,当D′F⊥CD时,的值为(  ) A.B.C.D.考点:翻折变换(折叠问题)专题:压轴题.分析:首先延长DC与A′D′,交于点M,由四边形ABCD是菱形与折叠的性质,易求得△BCM是等腰三角形,△D′FM是含30°角的直角三角形,然后设CF=x,D′F=DF=y,利用正切函数的知识,即可求得答案.解答:解:延长DC与A′D′,交于点M,∵在菱形纸片ABCD中,∠A=60°,∴∠DCB=∠A=60°,AB∥CD,∴∠D=180°﹣∠A=120°,根据折叠的性质,可得∠A′D′F=∠D=120°,∴∠FD′M=180°﹣∠A′D′F=60°,∵D′F⊥CD,∴∠D′FM=90°,∠M=90°﹣∠FD′M=30°,∵∠BCM=180°﹣∠BCD=120°,22\n∴∠CBM=180°﹣∠BCM﹣∠M=30°,∴∠CBM=∠M,∴BC=CM,设CF=x,D′F=DF=y,则BC=CM=CD=CF+DF=x+y,∴FM=CM+CF=2x+y,在Rt△D′FM中,tan∠M=tan30°==,∴x=y,∴==.故选A.点评:此题考查了折叠的性质、菱形的性质、等腰三角形的判定与性质以及直角三角形的性质.此题难度较大,注意掌握辅助线的作法,注意折叠中的对应关系,注意数形结合思想的应用. 10.(3分)小红同学用仪器测量一棵大树AB的高度,在C处测得∠ADG=30°,在E处测得∠AFG=60°,CE=8米,仪器高度CD=1.5米,则这棵树AB的高度为(  )(结果保留两位有效数字,≈1.732) A.6.9B.6.93C.8.4D.8.43考点:解直角三角形的应用分析:首先根据题意可得GB=EF=CD=1.5米,DF=CE=8米,然后设AG=x米,GF=y米,则在Rt△AFG与Rt△ADG,利用正切函数,即可求得x与y的关系,解方程组即可求得答案.解答:解:根据题意得,四边形DCEF、DCBG是矩形,22\n∴GB=EF=CD=1.5米,DF=CE=8米,设AG=x米,GF=y米,在Rt△AFG中,tan∠AFG=tan60°===,在Rt△ADG中,tan∠ADG=tan30°===,∴x=4,y=4,∴AG=4米,FG=4米,∴AB=AG+GB=4+1.5≈8.4(米).∴这棵树AB的高度为8.4米.故选C.点评:本题考查了解直角三角形的应用,注意能借助仰角构造直角三角形并解直角三角形是解此题的关键,注意数形结合思想与方程思想的应用. 11.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为直线x=1,有如下结论:①c<1;②2a+b=0;③b2<4ac;④若方程ax2+bx+c=0的两根为x1,x2,则x1+x2=2,则正确的结论是(  ) A.①②B.①③C.②④D.③④考点:二次函数图象与系数的关系专题:计算题;压轴题.分析:由抛物线与y轴的交点在1的上方,得到c大于1,故选项①错误;由抛物线的对称轴为x=1,利用对称轴公式得到关于a与b的关系,整理得到2a+b=0,选项②正确;由抛物线与x轴的交点有两个,得到根的判别式大于0,整理可判断出选项③错误;令抛物线解析式中y=0,得到关于x的一元二次方程,利用根与系数的关系表示出两根之和,将得到的a与b的关系式代入可得出两根之和为2,选项④正确,即可得到正确的选项.解答:解:由抛物线与y轴的交点位置得到:c>1,选项①错误;∵抛物线的对称轴为x=﹣=1,∴2a+b=0,选项②正确;由抛物线与x轴有两个交点,得到b2﹣4ac>0,即b2>4ac,选项③错误;令抛物线解析式中y=0,得到ax2+bx+c=0,∵方程的两根为x1,x2,且﹣=1,及﹣=2,22\n∴x1+x2=﹣=2,选项④正确,综上,正确的结论有②④.故选C点评:此题考查了二次函数图象与系数的关系,二次函数y=ax2+bx+c(a≠0),a的符号由开口方向决定,c的符号由抛物线与y轴交点的位置确定,b的符号由a及对称轴的位置确定,抛物线与x轴交点的个数决定根的判别式的符号. 12.(3分)如图,正方形ABCD的边长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿A→B→C和A→D→C的路径向点C运动,设运动时间为x(单位:s),四边形PBDQ的面积为y(单位:cm2),则y与x(0≤x≤8)之间函数关系可以用图象表示为(  ) A.B.C.D.考点:动点问题的函数图象.3891921专题:压轴题;数形结合.分析:根据题意结合图形,分①0≤x≤4时,根据四边形PBDQ的面积=△ABD的面积﹣△APQ的面积,列出函数关系式,从而得到函数图象,②4≤x≤8时,根据四边形PBDQ的面积=△BCD的面积﹣△CPQ的面积,列出函数关系式,从而得到函数图象,再结合四个选项即可得解.解答:解:①0≤x≤4时,∵正方形的边长为4cm,∴y=S△ABD﹣S△APQ,=×4×4﹣•x•x,=﹣x2+8,②4≤x≤8时,y=S△BCD﹣S△CPQ,=×4×4﹣•(8﹣x)•(8﹣x),=﹣(8﹣x)2+8,22\n所以,y与x之间的函数关系可以用两段二次函数图象表示,纵观各选项,只有B选项图象符合.故选B.点评:本题考查了动点问题的函数图象,根据题意,分别求出两个时间段的函数关系式是解题的关键. 二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分.13.(4分)分解因式:x3y﹣2x2y2+xy3= xy(x﹣y)2 .考点:提公因式法与公式法的综合运用分析:先提取公因式,再利用完全平方公式进行二次分解因式.解答:解:x3y﹣2x2y2+xy3,=xy(x2﹣2xy+y2),=xy(x﹣y)2.点评:本题主要考查提公因式法分解因式和利用完全平方公式分解因式,难点在于需要进行二次分解因式. 14.(4分)小宏准备用50元钱买甲、乙两种饮料共10瓶,已知甲饮料每瓶7元,乙饮料每瓶4元,则小宏最多能买 3 瓶甲饮料.考点:一元一次不等式的应用分析:首先设小宏能买x瓶甲饮料,则可以买(10﹣x)瓶乙饮料,由题意可得不等关系:甲饮料的花费+乙饮料的花费≤50元,根据不等关系可列出不等式,再求出整数解即可.解答:解:设小宏能买x瓶甲饮料,则可以买(10﹣x)瓶乙饮料,由题意得:7x+4(10﹣x)≤50,解得:x≤,∵x为整数,∴x,0,1,2,3,则小宏最多能买3瓶甲饮料.故答案为:3.点评:此题主要考查了一元一次不等式的应用,关键是弄清题意,找出合适的不等关系,设出未知数,列出不等式. 15.(4分)已知点A(1,5),B(3,﹣1),点M在x轴上,当AM﹣BM最大时,点M的坐标为 (,0) .考点:轴对称-最短路线问题;坐标与图形性质分析:作点B关于x轴的对称点B′,连接AB′并延长与x轴的交点,即为所求的M点.利用待定系数法求出直线AB′的解析式,然后求出其与x轴交点的坐标,即M点的坐标.解答:解:如图,作点B关于x轴的对称点B′,连接AB′并延长与x轴的交点,即为所求的M点.此时AM﹣BM=AM﹣B′M=AB′.22\n不妨在x轴上任取一个另一点M′,连接M′A、M′B、M′B′.则M′A﹣M′B=M′A﹣M′B′<AB′(三角形两边之差小于第三边).∴M′A﹣M′B<AM﹣BM,即此时AM﹣BM最大.∵B′是B(3,﹣1)关于x轴的对称点,∴B′(3,1).设直线AB′解析式为y=kx+b,把A(1,5)和B′(3,1)代入得:,解得,∴直线AB′解析式为y=﹣2x+7.令y=0,解得x=,∴M点坐标为(,0).故答案为:(,0).点评:本题考查了轴对称﹣﹣最短路线问题、坐标与图形性质.解题时可能感觉无从下手,主要原因是平时习惯了线段之和最小的问题,突然碰到线段之差最大的问题感觉一筹莫展.其实两类问题本质上是相通的,前者是通过对称转化为“两点之间线段最短”问题,而后者(本题)是通过对称转化为“三角形两边之差小于第三边”问题.可见学习知识要活学活用,灵活变通. 16.(4分)如图,在Rt△ABC中,∠ABC=90°,BA=BC.点D是AB的中点,连接CD,过点B作BG丄CD,分别交CD、CA于点E、F,与过点A且垂直于AB的直线相交于点G,连接DF.给出以下四个结论:①;②点F是GE的中点;③AF=AB;④S△ABC=5S△BDF,其中正确的结论序号是 ①③ .22\n考点:相似三角形的判定与性质;勾股定理;等腰直角三角形专题:压轴题.分析:首先根据题意易证得△AFG∽△CFB,根据相似三角形的对应边成比例与BA=BC,继而证得正确;由点D是AB的中点,易证得BC=2BD,由等角的余角相等,可得∠DBE=∠BCD,即可得AG=AB,继而可得FG=BF;即可得AF=AC,又由等腰直角三角形的性质,可得AC=AB,即可求得AF=AB;则可得S△ABC=6S△BDF.解答:解:∵在Rt△ABC中,∠ABC=90°,∴AB⊥BC,AG⊥AB,∴AG∥BC,∴△AFG∽△CFB,∴,∵BA=BC,∴,故①正确;∵∠ABC=90°,BG⊥CD,∴∠DBE+∠BDE=∠BDE+∠BCD=90°,∴∠DBE=∠BCD,∵AB=CB,点D是AB的中点,∴BD=AB=CB,∵tan∠BCD==,∴在Rt△ABG中,tan∠DBE==,∵=,∴FG=FB,∵GE≠BF,∴点F不是GE的中点.故②错误;22\n∵△AFG∽△CFB,∴AF:CF=AG:BC=1:2,∴AF=AC,∵AC=AB,∴AF=AB,故③正确;∵BD=AB,AF=AC,∴S△ABC=6S△BDF,故④错误.故答案为:①③.点评:此题考查了相似三角形的判定与性质、直角三角形的性质以及三角函数等知识.此题难度适中,解题的关键是证得△AFG∽△CFB,注意掌握数形结合思想与转化思想的应用. 17.(4分)在平面直角坐标系xOy中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=kx+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果A1(1,1),A2(),那么点An的纵坐标是 ()n﹣1 .考点:一次函数综合题专题:代数几何综合题;压轴题;规律型.分析:利用待定系数法求一次函数解析式求出直线的解析式,再求出直线与x轴、y轴的交点坐标,求出直线与x轴的夹角的正切值,分别过等腰直角三角形的直角顶点向x轴作垂线,然后根据等腰直角三角形斜边上的高线与中线重合并且等于斜边的一半,利用正切值列式依次求出三角形的斜边上的高线,即可得到各点的纵坐标的规律.解答:解:∵A1(1,1),A2(,)在直线y=kx+b上,22\n∴,解得,∴直线解析式为y=x+,如图,设直线与x轴、y轴的交点坐标分别为N、M,当x=0时,y=,当y=0时,x+=0,解得x=﹣4,∴点M、N的坐标分别为M(0,),N(﹣4,0),∴tan∠MNO===,作A1C1⊥x轴与点C1,A2C2⊥x轴与点C2,A3C3⊥x轴与点C3,∵A1(1,1),A2(,),∴OB2=OB1+B1B2=2×1+2×=2+3=5,tan∠MNO===,∵△B2A3B3是等腰直角三角形,∴A3C3=B2C3,∴A3C3==()2,同理可求,第四个等腰直角三角形A4C4==()3,依此类推,点An的纵坐标是()n﹣1.故答案为:()n﹣1.点评:22\n本题是对一次函数的综合考查,主要利用了待定系数法求函数解析式,等腰直角三角形斜边上的高线就是斜边上的中线,直角三角形斜边上的中线等于斜边的一半,以及正切的定义,规律性较强,注意指数与点的脚码相差1. 三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.18.(6分)求代数式的值:,其中.考点:分式的化简求值专题:计算题.分析:把代数式第一项的分子提取x分解因式,分母利用平方差公式分解因式,然后利用除以一个数等于乘以这个数的倒数化为乘法运算,约分后可得出最简结果,然后把x的值代入滑稽那后的式子中,即可得到原式的值.解答:解:÷+(x+2)=•+x+2=+x+2=x+,当x=时,原式=+=3.点评:此题考查了分式的化简求值,分式的化简求值运算时,分式的乘除运算关键是约分,约分的关键是找公因式,若出现多项式,应将多项式分解因式后再约分;分式的加减运算关键是通分,通分的关键是找公分母,同时注意要将原式化为最简,再代值. 19.(8分)某区对参加2022年中考的5000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和频数分布直方图的一部分.请根据图表信息回答下列问题:视力频数(人)频率4.0≤x<4.3200.14.3≤x<4.6400.24.6≤x<4.9700.354.9≤x<5.2a0.35.2≤x<5.510b(1)在频数分布表中,a的值为 60 ,b的值为 0.05 ,并将频数分布直方图补充完整;(2)甲同学说:“我的视力情况是此次抽样调查所得数据的中位数”,问甲同学的视力情况应在什么范围?(3)若视力在4.9以上(含4.9)均属正常,则视力正常的人数占被统计人数的百分比是 35% ;并根据上述信息估计全区初中毕业生中视力正常的学生有多少人?22\n考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表;中位数专题:压轴题;图表型.分析:(1)首先根据表格的已知数据求出所抽取的总人数,然后即可求出a,再根据所有频率之和为1即可求出b,最后根据表格中的所有数据就可以补全右边的图形;(2)由于知道总人数为200人,根据中位数的定义知道中位数在4.6≤x<4.9这个小组,所以甲同学的视力情况的范围也可以求出;(3)首先根据表格信息求出视力在4.9以上(含4.9)的人数,除以总人数即可求出视力正常的人数占被统计人数的百分比,然后根据样本估计总体的思想就可以求出全区初中毕业生中视力正常的学生的人数.解答:解:(1)∵20÷0.1=200,∴a=200﹣20﹣40﹣70﹣10=60,b=10÷200=0.05;补全直方图如图所示.故填60;0.05.(2)∵根据中位数的定义知道中位数在4.6≤x<4.9,∴甲同学的视力情况范围:4.6≤x<4.9;(3)视力正常的人数占被统计人数的百分比是:,∴估计全区初中毕业生中视力正常的学生有35%×5000=1750人.故填35%.22\n点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数、众数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据中的数. 20.(8分)已知一次函数y=x+2的图象分别与坐标轴相交于A、B两点(如图所示),与反比例函数y=(x>0)的图象相交于C点.(1)写出A、B两点的坐标;(2)作CD⊥x轴,垂足为D,如果OB是△ACD的中位线,求反比例函数y=(x>0)的关系式.考点:反比例函数与一次函数的交点问题;一次函数图象上点的坐标特征;待定系数法求反比例函数解析式;三角形中位线定理专题:计算题.分析:(1)分别把x=0和y=0代入一次函数的解析式,即可求出A、B的坐标;(2)根据三角形的中位线求出OA=OD=3,即可得出D、C的横坐标是3,代入一次函数的解析式,求出C的坐标,代入反比例函数的解析式,求出k即可.解答:解:(1)∵y=x+2,∴当x=0时,y=2,当y=0时,x=﹣3,∴A的坐标是(﹣3,0),B的坐标是(0,2).22\n(2)∵A(﹣3,0),∴OA=3,∵OB是△ACD的中位线,∴OA=OD=3,即D点、C点的横坐标都是3,把x=3代入y=x+2得:y=2+2=4,即C的坐标是(3,4),∵把C的坐标代入y=得:k=3×4=12,∴反比例函数y=(x>0)的关系式是y=.点评:本题考查了一次函数与反比例函数的交点问题,用待定系数法求反比例函数的解析式,一次函数图象上点的坐标特征等知识点的应用,主要考查学生运用性质进行计算的能力,题目比较典型,具有一定的代表性. 21.(10分)(2022•内江)如图,四边形ABCD是矩形,E是BD上的一点,∠BAE=∠BCE,∠AED=∠CED,点G是BC、AE延长线的交点,AG与CD相交于点F.(1)求证:四边形ABCD是正方形;(2)当AE=2EF时,判断FG与EF有何数量关系?并证明你的结论.考点:相似三角形的判定与性质;全等三角形的判定与性质;矩形的性质;正方形的判定专题:几何综合题;压轴题.分析:(1)由∠BAE=∠BCE,∠AED=∠CED,利用三角形外角的性质,即可得∠CBE=∠ABE,又由四边形ABCD是矩形,即可证得△ABD与△BCD是等腰直角三角形,继而证得四边形ABCD是正方形;(2)由题意易证得△ABE∽△FDE,△ADE∽△GBE,△ADF∽△GCF,由AE=2EF,利用相似三角形的对应边成比例,即可求得FG=3EF.解答:(1)证明:∵∠CED是△BCE的外角,∠AED是△ABE的外角,∴∠CED=∠CBE+∠BCE,∠AED=∠BAE+∠ABE,∵∠BAE=∠BCE,∠AED=∠CED,∴∠CBE=∠ABE,22\n∵四边形ABCD是矩形,∴∠ABC=∠BCD=∠BAD=90°,AB=CD,∴∠CBE=∠ABE=45°,∴△ABD与△BCD是等腰直角三角形,∴AB=AD=BC=CD,∴四边形ABCD是正方形;(2)当AE=2EF时,FG=3EF.证明:∵四边形ABCD是正方形,∴AB∥CD,AD∥BC,∴△ABE∽△FDE,△ADE∽△GBE,∵AE=2EF,∴BE:DE=AE:EF=2,∴BG:AD=BE:DE=2,即BG=2AD,∵BC=AD,∴CG=AD,∵△ADF∽△GCF,∴FG:AF=CG:AD,即FG=AF=AE+EF=3EF.点评:此题考查了相似三角形的判定与性质、矩形的性质,正方形的判定与性质、等腰直角三角形的性质以及三角形外角的性质.此题难度适中,注意数形结合思想的应用. 22.(10分)我市某服装厂主要做外贸服装,由于技术改良,2022年全年每月的产量y(单位:万件)与月份x之间可以用一次函数y=x+10表示,但由于“欧债危机”的影响,销售受困,为了不使货积压,老板只能是降低利润销售,原来每件可赚10元,从1月开始每月每件降低0.5元.试求:(1)几月份的单月利润是108万元?(2)单月最大利润是多少?是哪个月份?考点:二次函数的应用;一元二次方程的应用专题:销售问题.分析:(1)单月利润=每月的产量×(10﹣0.5×相应的月份),把相关数值代入求解即可;(2)根据(1)得到的关系式,利用配方法可得二次函数的最值问题.解答:解:(1)由题意得:(10﹣0.5x)(x+10)=108,﹣0.5x2+5x﹣8=0,x2﹣10x+16=0,(x﹣2)(x﹣8)=0,x1=2,x2=8.答:2月份和8月份单月利润都是108万元.(2)设利润为w,则w=(10﹣0.5x)(x+10)=﹣0.5x2+5x+100=﹣0.5(x﹣5)2+112.5,所以当x=5时,w有最大值112.5.22\n答:5月份的单月利润最大,最大利润为112.5万元.点评:考查二次函数的应用;得到单月利润的关系式是解决本题的关键. 23.(10分)已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,AH⊥MN于点H.(1)如图①,当∠MAN点A旋转到BM=DN时,请你直接写出AH与AB的数量关系: AH=AB ;(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长.(可利用(2)得到的结论)考点:正方形的性质;全等三角形的判定与性质;勾股定理专题:证明题;压轴题;探究型.分析:(1)由三角形全等可以证明AH=AB,(2)延长CB至E,使BE=DN,证明△AEM≌△ANM,能得到AH=AB,(3)分别沿AM、AN翻折△AMH和△ANH,得到△ABM和△AND,然后分别延长BM和DN交于点C,得正方形ABCE,设AH=x,则MC=x﹣2,NC=x﹣3,在Rt△MCN中,由勾股定理,解得x.解答:解:(1)如图①AH=AB.(2)数量关系成立.如图②,延长CB至E,使BE=DN.∵ABCD是正方形,∴AB=AD,∠D=∠ABE=90°,在Rt△AEB和Rt△AND中,,∴Rt△AEB≌Rt△AND,∴AE=AN,∠EAB=∠NAD,∴∠EAM=∠NAM=45°,在△AEM和△ANM中,,∴△AEM≌△ANM.∵AB、AH是△AEM和△ANM对应边上的高,∴AB=AH.22\n(3)如图③分别沿AM、AN翻折△AMH和△ANH,得到△ABM和△AND,∴BM=2,DN=3,∠B=∠D=∠BAD=90°.分别延长BM和DN交于点C,得正方形ABCD,由(2)可知,AH=AB=BC=CD=AD.设AH=x,则MC=x﹣2,NC=x﹣3,在Rt△MCN中,由勾股定理,得MN2=MC2+NC2∴52=(x﹣2)2+(x﹣3)2(6分)解得x1=6,x2=﹣1.(不符合题意,舍去)∴AH=6.点评:本题主要考查正方形的性质和三角形全等的判断,不是很难. 24.(12分)如图,在平面直角坐标系xOy中,半径为1的圆的圆心O在坐标原点,且与两坐标轴分别交于A、B、C、D四点.抛物线y=ax2+bx+c与y轴交于点D,与直线y=x交于点M、N,且MA、NC分别与圆O相切于点A和点C.(1)求抛物线的解析式;(2)抛物线的对称轴交x轴于点E,连接DE,并延长DE交圆O于F,求EF的长;(3)过点B作圆O的切线交DC的延长线于点P,判断点P是否在抛物线上,说明理由.22\n考点:二次函数综合题专题:综合题;压轴题.分析:(1)根据图形,易得点A、B、C、D的坐标;进而可得抛物线上三点D、M、N的坐标,将其代入解析式,求可得解析式;(2)有(1)的解析式,可得顶点坐标,即OE、DE的长,易得△BFD∽△EOD,再由EF=FD﹣DE的关系代入数值可得答案;(3)首先根据CD的坐标求出CD的直线方程,在根据切线的性质,可求得P的坐标,进而可得P是否在抛物线上.解答:解:(1)∵圆心O在坐标原点,圆O的半径为1∴点A、B、C、D的坐标分别为A(﹣1,0)、B(0,﹣1)、C(1,0)、D(0,1)∵抛物线与直线y=x交于点M、N,且MA、NC分别与圆O相切于点A和点C∴M(﹣1,﹣1)、N(1,1)∵点D、M、N在抛物线上,将D(0,1)、M(﹣1,﹣1)、N(1,1)的坐标代入y=ax2+bx+c,得:解之,得:∴抛物线的解析式为y=﹣x2+x+1.(2)∵y=﹣x2+x+1=﹣(x﹣)2+∴抛物线的对称轴为∴OE=,DE=连接BF,则∠BFD=90°∴△BFD∽△EOD∴22\n又DE=,OD=1,DB=2∴FD=∴EF=FD﹣DE=.(3)点P在抛物线上.设过D、C点的直线为y=kx+b将点C(1,0)、D(0,1)的坐标代入y=kx+b,得k=﹣1,b=1∴直线DC为y=﹣x+1过点B作圆O的切线BP与x轴平行,P点的纵坐标为y=﹣1将y=﹣1代入y=﹣x+1,得x=2∴P点的坐标为(2,﹣1)当x=2时,y=﹣x2+x+1=﹣22+2+1=﹣1所以,P点在抛物线y=﹣x2+x+1上.点评:本题考查学生将二次函数的图象与圆的位置关系,要求学生将图象与解析式互相结合分析、处理问题.22

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 20:40:25 页数:22
价格:¥3 大小:318.46 KB
文章作者:U-336598

推荐特供

MORE