首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
中考
>
二轮专题
>
河北省2022年中考数学复习四边形第27讲矩形与菱形试题含解析
河北省2022年中考数学复习四边形第27讲矩形与菱形试题含解析
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/11
2
/11
剩余9页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
第27讲 矩形与菱形1.(2022,河北)如图,矩形ABCD的顶点A,B在数轴上,CD=6,点A表示的数为-1,则点B表示的数为5.第1题图【解析】∵四边形ABCD是矩形,∴AB=CD=6.∴点B表示的数为(-1)+6=5.2.(2022,河北)如图,已知菱形ABCD,其顶点A,B在数轴上表示的数分别为-4和1,则BC=5.第2题图【解析】∵菱形ABCD的顶点A,B在数轴上表示的数分别为-4和1,∴AB=1-(-4)=5.∴BC=AB=5.3.(2022,河北,导学号5892921)如图,在菱形ABCD中,点M,N在AC上,ME⊥AD,NF⊥AB.若NF=NM=2,ME=3,则AN的长为(B)第3题图A.3B.4C.5D.6【解析】在菱形ABCD中,∠DAC=∠BAC.∵ME⊥AD,NF⊥AB,∴∠AEM=∠AFN=90°.∴△AFN∽△AEM.∴=,即=.解得AN=4.4.(2022,河北)求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD是菱形,对角线AC,BD相交于点O.求证:AC⊥BD.以下是排乱的证明过程:①又BO=DO,②∴AO⊥BD,即AC⊥BD.③∵四边形ABCD是菱形,④∴AB=AD.证明步骤正确的顺序是(B)第4题图A.③→②→①→④B.③→④→①→②C.①→②→④→③D.①→④→③→②【解析】根据菱形的性质,先得到AB=AD和BO=DO,再根据等腰三角形的“三线合一”证明AC⊥BD.故证明步骤正确的顺序为③→④→①→②.11\n 矩形的性质与判定例1(2022,廊坊安次区模拟)如图,在矩形ABCD中,AB=3,AD=8,E为BC的中点,连接AE,EF是∠AEC的平分线,交AD于点F,则FD的长为(A)例1题图A.3B.4C.5D.6【解析】∵四边形ABCD是矩形,∴AD=BC=8,AD∥BC.∴∠AFE=∠FEC.∵EF平分∠AEC,∴∠AEF=∠FEC.∴∠AFE=∠AEF.∴AE=AF.∵E为BC的中点,BC=8,∴BE=4.在Rt△ABE中,AB=3,BE=4,由勾股定理,得AE=5.∴AF=AE=5.∴DF=AD-AF=8-5=3.针对训练1如图,在矩形ABCD中,AB=,BC=3,AE⊥BD于点E,则EC的长为(D)训练1题图A.B.C.D.【解析】如答图,过点E作EF⊥BC于点F.∵四边形ABCD是矩形,∴AD=BC=3,∠BAD=90°.∵AB=,∴tan∠ADB==.∴∠ADB=30°.∴∠ABE=60°.∴∠FBE=30°.∴在Rt△ABE中,cos∠ABE===.∴BE=.∴在Rt△BEF中,cos∠FBE===,sin∠FBE===.∴BF=,EF=.∴CF=3-=.∴在Rt△CFE中,CE==.训练1答图 菱形的判定和性质11\n例2(2022,滨州惠民县模拟)如图,在▱ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F.若BF=12,AB=10,则AE的长为(C)例2题图A.10B.12C.16D.18【解析】如答图,设AE和BF交于点O.∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAE=∠AEB.∵∠BAD的平分线交BC于点E,∴∠DAE=∠BAE.∴∠BAE=∠BEA.∴AB=BE.同理AB=AF.∴AF=BE.∴四边形ABEF是平行四边形.∵AB=AF,∴四边形ABEF是菱形.∴AE⊥BF,OA=OE,OB=OF=BF=6.∴OA===8.∴AE=2OA=16.例2答图针对训练2如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:四边形ADCF是菱形;(2)若AC=8,AB=10,求菱形ADCF的面积.训练2题图【思路分析】(1)先证得△AEF≌△DEB,再求得AF=CD,可证得四边形ADCF为平行四边形,再利用直角三角形的性质可求得AD=CD,可证得结论.(2)根据条件可证得S菱形ADCF=S△ABC,结合条件可求得答案.(1)证明:∵E是AD的中点,∴AE=DE.∵AF∥BC,∴∠AFE=∠DBE.在△AEF和△DEB中,∴△AEF≌△DEB(AAS).∴AF=DB.∵D是BC的中点,∴BD=CD.∴AF=CD.∵AF∥BC,∴四边形ADCF是平行四边形.∵∠BAC=90°,D是BC的中点,∴AD=CD=BC.11\n∴四边形ADCF是菱形.(2)解:设AF到CD的距离为h.∵AF∥BC,AF=BD=CD,∠BAC=90°,∴S菱形ADCF=CD·h=BC·h=S△ABC=AB·AC=40.一、选择题1.(2022,十堰)菱形不具备的性质是(B)A.四条边都相等 B.对角线一定相等C.是轴对称图形 D.是中心对称图形【解析】菱形的四条边相等,是轴对称图形,也是中心对称图形,对角线互相垂直不一定相等.2.(2022,上海)已知▱ABCD,下列条件中,不能判定这个平行四边形为矩形的是(B)A.∠A=∠BB.∠A=∠CC.AC=BDD.AB⊥BC【解析】A.∠A=∠B,∠A+∠B=180°,∴∠A=∠B=90°.可以判定这个平行四边形为矩形.B.∠A=∠C不能判定这个平行四边形为矩形.C.AC=BD,对角线相等,可推出▱ABCD是矩形.D.AB⊥BC,∴∠B=90°.可以判定这个平行四边形为矩形.3.(2022,贵阳)如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F.如果EF=3,那么菱形ABCD的周长为(A)第3题图A.24B.18C.12D.9【解析】∵E是AC的中点,EF∥BC,∴EF是△ABC的中位线.∴EF=BC.∴BC=6.∴菱形ABCD的周长是4×6=24.4.(2022,哈尔滨)如图,在菱形ABCD中,对角线AC,BD相交于点O,BD=8,tan∠ABD=,则线段AB的长为(C)第4题图A.B.2C.5D.10【解析】∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,OB=OD.∴∠AOB=90°.∵BD=8,∴OB=4.∵tan∠ABD==,∴AO=3.在Rt△AOB中,由勾股定理,得AB===5.5.(2022,大连)如图,在菱形ABCD中,对角线AC,BD相交于点O.若AB=5,AC=6,则BD的长是(A)11\n第5题图A.8B.7C.4D.3【解析】∵四边形ABCD是菱形,∴OA=OC=3,OB=OD,AC⊥BD.在Rt△AOB中,根据勾股定理,得OB===4.∴BD=2OB=8.6.(2022,孝感)如图,菱形ABCD的对角线AC,BD相交于点O,AC=10,BD=24,则菱形ABCD的周长为(A)第6题图A.52B.48C.40D.20【解析】∵在菱形ABCD中,BD=24,AC=10,∴OB=12,OA=5.易知∠AOB=90°.在Rt△ABO中,AB==13.∴菱形ABCD的周长为4AB=52.7.(2022,保定模拟)如图,在矩形ABCD中,对角线AC,BD相交于点O,E,F分别是AD,AO的中点.若AB=6,BC=8,则△AEF的周长为(C)第7题图A.6B.8C.9D.10【解析】∵四边形ABCD是矩形,∴AD=BC=8,∠BAD=90°,OB=OD=OA=OC.在Rt△BAD中,∵BD===10,∴OD=OA=OB=5.∵E,F分别是AD,AO的中点,∴EF=OD=,AE=4,AF=.∴△AEF的周长为9.8.(2022,遵义)如图,P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于点E,F,连接PB,PD.若AE=2,PF=8,则图中阴影部分的面积为(C)第8题图A.10B.12C.16D.18【解析】如答图,过点P作PM⊥AD于点M,交BC于点N,则四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形.∴S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN.∴S△PBE=S△DFP=×2×8=8.∴S阴影=8+8=16.11\n第8题答图9.(2022,宿迁)如图,菱形ABCD的对角线AC,BD相交于点O,E为边CD的中点.若菱形ABCD的周长为16,∠BAD=60°,则△OCE的面积是(A)第9题图A.B.2C.2D.4【解析】如答图,过点D作DH⊥AB于点H.∵四边形ABCD是菱形,∴AO=CO,AB=BC=CD=AD.∵菱形ABCD的周长为16,∴AB=AD=4.∵∠BAD=60°,∴DH=AD·sin∠BAD=4×=2.∴S菱形ABCD=4×2=8.∴S△ACD=×8=4.∵E为边CD的中点,∴S△OCE=S△OCD=S△ACD=×4=.第9题答图10.(2022,枣庄)如图,在矩形ABCD中,E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是(A)第10题图A.B.C.D.【解析】∵四边形ABCD是矩形,∴AD=BC,AD∥BC.∵E是边BC的中点,∴BE=BC=AD.∵AD∥BC,∴△BEF∽△DAF.∴==.∴EF=AF.∴EF=AE.∵E是边BC的中点,∴由矩形的对称性,得AE=DE.∴EF=DE.设EF=x,则DE=3x.∴DF==2x.∴tan∠BDE===.二、填空题11.(2022,株洲)如图,矩形ABCD的对角线AC与BD相交于点O,AC=10,P,Q分别为AO,AD的中点,则PQ的长为2.5.11\n第11题图【解析】∵四边形ABCD是矩形,∴BD=AC=10,BO=DO=BD.∴OD=BD=5.∵P,Q分别是AO,AD的中点,∴PQ是△AOD的中位线.∴PQ=DO=2.5.12.(2022,连云港,导学号5892921)如图,E,F,G,H分别为矩形ABCD的边AB,BC,CD,DA的中点,连接AC,HE,EC,GA,GF.已知AG⊥GF,AC=,则AB的长为2.第12题图【解析】如答图,连接BD.∵四边形ABCD是矩形,∴∠ADC=∠DCB=90°,BD=AC=.∵G,F分别是CD,BC的中点,∴CG=DG,CF=FB,GF=BD=.∵AG⊥FG,∴∠AGF=90°.∵∠DAG+∠AGD=90°,∠AGD+∠CGF=90°,∴∠DAG=∠CGF.∴△ADG∽△GCF.∴=.设CF=BF=a,CG=DG=b,则=.∴b2=2a2.∵a>0,b>0,∴b=a.在Rt△GCF中,CF2+CG2=GF2,即a2+b2=.∴3a2=.∴a=.∴b=1.∴AB=2b=2.第12题答图三、解答题13.(2022,张家界)在矩形ABCD中,点E在BC上,AE=AD,DF⊥AE,垂足为F.(1)求证:DF=AB;(2)若∠FDC=30°,且AB=4,求AD的长.第13题图【思路分析】(1)利用“AAS”证△ADF≌△EAB即可得.(2)由∠ADF+∠FDC=90°,∠DAF+∠ADF=90°,得∠DAF=∠FDC=30°.据此知AD=2DF.由(1)知DF=AB可得答案.(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∠B=90°.∴∠AEB=∠DAF.∵DF⊥AE,∴∠DFA=90°.∴∠DFA=∠B.11\n∵AD=EA,∴△ADF≌△EAB.∴DF=AB.(2)解:∵∠ADF+∠FDC=90°,∠DAF+∠ADF=90°,∴∠DAF=∠FDC=30°.∴AD=2DF.由(1)知DF=AB,∴AD=2AB=8.14.(2022,乌鲁木齐)如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC,EF⊥CD于点F.(1)求证:四边形AECD是菱形;(2)若AB=6,BC=10,求EF的长.第14题图【思路分析】(1)根据平行四边形和菱形的判定证明即可.(2)根据菱形的性质和三角形的面积公式解答即可.(1)证明:∵AD∥BC,AE∥DC,∴四边形AECD是平行四边形.∵∠BAC=90°,E是BC的中点,∴AE=CE=BC.∴四边形AECD是菱形.(2)解:如答图,过点A作AH⊥BC于点H.∵∠BAC=90°,AB=6,BC=10,∴AC==8.∵S△ABC=BC·AH=AB·AC,∴AH==.∵E是BC的中点,BC=10,∴CE=5.由(1)知四边形AECD是菱形,∴CD=CE=5.∵S▱AECD=CE·AH=CD·EF,∴EF=AH=.第14题答图1.(2022,威海)矩形ABCD与矩形CEFG如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH的长为(C)11\n第1题图A.1B.C.D.【解析】如答图,延长GH交AD于点P.∵四边形ABCD和四边形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2,GF=CE=1.∴AD∥GF.∴∠GFH=∠PAH.∵H是AF的中点,∴AH=FH.在△APH和△FGH中,∴△APH≌△FGH(ASA).∴AP=GF=1,GH=PH=PG.∴PD=AD-AP=1.∵CG=2,CD=1,∴DG=1.∴GH=PG==.第1题答图2.(2022,达州,导学号5892921)如图,在平面直角坐标系中,矩形OABC的顶点A(-6,0),C(0,2).将矩形OABC绕点O按顺时针方向旋转,使点A恰好落在OB上的点A1处,则点B的对应点B1的坐标为(-2,6).第2题图【解析】如答图,连接OB1,过点B1作B1H⊥OA于点H.由题意,得OA=6,AB=OC=2.∴tan∠BOA==.∴∠BOA=30°.∴∠ABO=60°.由旋转的性质,可知∠B1OB=∠BOA=30°,OB1=OB.∴∠B1OH=60°.∴∠B1OH=∠ABO.在△AOB和△HB1O中,∴△AOB≌△HB1O.∴B1H=OA=6,OH=AB=2.∴点B1的坐标为(-2,6).第2题答图11\n3.(2022,泰安,导学号5892921)如图,在△ABC中,D是AB上的一点,DE⊥AC于点E,F是AD的中点,FG⊥BC于点G,与DE交于点H.若FG=AF,AG平分∠CAB,连接GE,GD.(1)求证:△ECG≌△GHD;(2)小亮同学经过探究发现:AD=AC+EC.请你帮助小亮同学证明这一结论;(3)若∠B=30°,判断四边形AEGF是否为菱形,并说明理由.第3题图【思路分析】(1)依据条件得出AC∥FG,DE∥BC,进而得出∠C=∠DHG=90°,∠CGE=∠GED,FG是线段ED的垂直平分线,进而得到GE=GD,∠CGE=∠GDE,利用AAS即可判定△ECG≌△GHD.(2)过点G作GP⊥AB于点P.先判定Rt△CAG≌Rt△PAG,可得AC=AP.由(1)可得EG=DG,即可得到Rt△ECG≌Rt△DPG,进而得EC=DP,即可得出AD=AP+PD=AC+EC.(3)依据∠B=30°,DE∥BC,可得∠ADE=30°,进而得到AE=AD,故AE=AF=FG.先判定四边形AEGF是平行四边形,即可得到四边形AEGF是菱形.(1)证明:∵AF=FG,∴∠FAG=∠FGA.∵AG平分∠CAB,∴∠CAG=∠FAG.∴∠CAG=∠FGA.∴AC∥FG.∵DE⊥AC,∴FG⊥DE.∵FG⊥BC,∴DE∥BC.∴AC⊥BC,∠CGE=∠GED.∴∠C=∠DHG=90°.∵F是AD的中点,FG∥AE,∴H是ED的中点.∴FG是线段ED的垂直平分线.∴GE=GD.∴∠GDE=∠GED.∴∠CGE=∠GDE.∴△ECG≌△GHD.(2)证明:如答图,过点G作GP⊥AB于点P.∵AG平分∠CAB,∠C=90°,∴GC=GP.∵AG=AG,∴Rt△CAG≌Rt△PAG.∴AC=AP.∵EG=DG,GC=GP,∴Rt△ECG≌Rt△DPG.∴EC=PD.∴AD=AP+PD=AC+EC.(3)解:四边形AEGF是菱形.理由:∵∠B=30°,DE∥BC,11\n∴∠ADE=∠B=30°.∴AE=AD.∴AE=AF=FG.∵AE∥FG,∴四边形AEGF是平行四边形.∵AE=AF,∴四边形AEGF是菱形.第3题答图11
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
2022中考数学第一部分知识梳理第五单元四边形第22讲矩形菱形正方形课件
河北省2022年中考数学总复习第五单元四边形课时训练23矩形菱形正方形练习
河北省2022年中考数学总复习第一编教材知识梳理篇第4章图形的初步认识与三角形四边形第6节矩形菱形正方形精讲试题
河北省2022年中考数学总复习第一编教材知识梳理篇第4章图形的初步认识与三角形四边形第6节矩形菱形正方形精练试题
河北省2022年中考数学复习圆第31讲与圆有关的计算试题含解析
河北省2022年中考数学复习圆第30讲与圆有关的位置关系试题含解析
河北省2022年中考数学复习四边形第28讲正方形与四边形综合试题含解析
河北省2022年中考数学复习四边形第26讲多边形与平行四边形试题含解析
文档下载
收藏
所属:
中考 - 二轮专题
发布时间:2022-08-25 20:18:17
页数:11
价格:¥3
大小:483.10 KB
文章作者:U-336598
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划