首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
中考
>
二轮专题
>
河北省2022年中考数学复习四边形第26讲多边形与平行四边形试题含解析
河北省2022年中考数学复习四边形第26讲多边形与平行四边形试题含解析
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/12
2
/12
剩余10页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
第26讲 多边形与平行四边形1.(2022,河北)如图,在▱ABCD中,∠A=70°.将平行四边形折叠,使点D,C分别落在点F,E处(点F,E都在AB所在的直线上),折痕为MN,则∠AMF的度数为(B)第1题图A.70°B.40°C.30°D.20°【解析】∵四边形ABCD是平行四边形,∴AB∥CD.根据折叠的性质,可得MN∥AE,∠FMN=∠DMN.∴AB∥CD∥MN.∵∠A=70°,∴∠FMN=∠DMN=∠A=70°.∴∠AMF=180°-∠DMN-∠FMN=180°-70°-70°=40°.2.(2022,河北)如图①,用4个全等的正八边形进行拼接,使相邻的两个正八边形有一条公共边,围成一圈后中间形成一个正方形.如图②,用n个全等的正六边形按这种方式拼接.若围成一圈后中间也形成一个正多边形,则n的值为6.第2题图【解析】因为正六边形的每个内角都是120°,所以拼成的正多边形的每个内角的度数为360°-120°-120°=120°.列方程,得=120°.解得n=6.3.(2022,河北,导学号5892921)如图,平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,则∠3+∠1-∠2=24°.第3题图【解析】正三角形的每个内角的度数是180°÷3=60°,正方形的每个内角的度数是360°÷4=90°,正五边形的每个内角的度数是(5-2)×180°÷5=108°,正六边形的每个内角的度数是(6-2)×180°÷6=120°,则∠3+∠1-∠2=(90°-60°)+(120°-108°)-(108°-90°)=24°.12\n4.(2022,河北)嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的.她先用尺规作出了如图所示的四边形ABCD,并写出了如下不完整的已知和求证.已知:如图,在四边形ABCD中,BC=AD,AB=CD.求证:四边形ABCD是平行四边形.第4题图(1)在方框中填空,以补全已知和求证;(2)按嘉淇的想法写出证明;(3)用文字叙述所证命题的逆命题为平行四边形的对边相等.【思路分析】连接BD,证明△ABD≌△CDB,利用全等三角形的性质来证明四边形ABCD为平行四边形.主要考查了平行四边形的判定定理和逆命题的表述.(1)解:CD 平行(2)证明:如答图,连接BD.∵AB=CD,AD=BC,BD=DB,∴△ABD≌△CDB.∴∠1=∠3,∠2=∠4.∴AB∥CD,AD∥BC.∴四边形ABCD是平行四边形.(3)解:平行四边形的对边相等第4题答图 借助多边形边与角的性质解决问题例1(2022,杭州临安区模拟)用一条宽相等的足够长的纸条,打一个结,如图①所示,然后轻轻拉紧、压平就可以得到如图②所示的正五边形ABCDE,其中∠BAC=36°.例1题图【解析】∵∠ABC==108°,△ABC是等腰三角形,∴∠BAC=∠BCA=36°.12\n针对训练1(2022,唐山二模)如图所示的是由射线AB,BC,CD,DE,EA组成的平面图形.若∠1+∠2+∠3+∠4=225°,ED∥AB,则∠1的度数为(B)训练1题图A.55°B.45°C.35°D.25°【解析】如答图.由多边形的外角和等于360°,可知∠1+∠2+∠3+∠4+∠5=360°.∵∠1+∠2+∠3+∠4=225°,∴∠5=135°.∴∠AED=45°.∵ED∥AB,∴∠1=∠AED=45°.训练1答图针对训练2(2022,济宁)如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC,∠BCD,则∠P的度数是(C)训练2题图A.50°B.55°C.60°D.65°【解析】∵在五边形ABCDE中,∠A+∠B+∠E=300°,∴∠EDC+∠BCD=240°.∵DP,CP分别平分∠EDC,∠BCD,∴∠PDC+∠PCD=120°.∴∠P=180°-(∠PDC+∠PCD)=180°-120°=60°. 借助平行四边形的性质求边和角例2(2022,绵阳游仙区模拟)如图,EF过▱ABCD对角线的交点O,交AD于点E,交BC于点F.若▱ABCD的周长为18,OE=2,则四边形EFCD的周长为(B)例2题图A.14B.13C.12D.10【解析】∵四边形ABCD是平行四边形,周长为18,∴AB=CD,BC=AD,OA=OC,AD∥BC.∴CD+AD=9,∠OAE=∠OCF.在△AEO和△CFO中,∴△AEO≌△CFO(ASA).∴OE=OF=2,AE=CF.∴四边形EFCD的周长为ED+CD+CF+EF=(DE+CF)+CD+EF=AD+CD+EF=9+4=13.针对训练3(2022,长春九台区模拟)如图,在▱ABCD中,∠C=130°,BE平分∠ABC12\n,则∠AEB等于(D)训练3题图A.55°B.45°C.35°D.25°【解析】∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC.∴∠ABC+∠C=180°,∠AEB=∠CBE.∵∠C=130°,∴∠ABC=180°-∠C=50°.∵BE平分∠ABC,∴∠CBE=∠ABC=25°.∴∠AEB=∠CBE=25°. 平行四边形的判定和性质例3(2022,济南模拟)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边三角形ACD,等边三角形ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.求证:(1)AC=EF;(2)四边形ADFE是平行四边形;(3)AC⊥DF.例3题图【思路分析】(1)首先在Rt△ABC中,由∠BAC=30°可以得到AB=2BC.又△ABE是等边三角形,EF⊥AB,由此得到AB=2AF,然后即可证明Rt△AFE≌Rt△BCA,再根据全等三角形的性质即可证明AC=EF.(2)根据(1)知EF=AC,而△ACD是等边三角形,所以EF=AC=AD.易证AD⊥AB,而EF⊥AB,由此得到EF∥AD,再根据平行四边形的判定定理即可证明四边形ADFE是平行四边形.(3)先求∠EAC=90°,由▱ADFE得AE∥DF,可以得AC⊥DF.证明:(1)∵在Rt△ABC中,∠BAC=30°,∴AB=2BC.∵△ABE是等边三角形,EF⊥AB,∴AB=2AF,AB=AE.∴AF=BC.在Rt△BCA和Rt△AFE中,∴Rt△BCA≌Rt△AFE(HL).∴AC=EF.(2)∵△ACD是等边三角形,∴∠DAC=60°,AC=AD.∴∠DAB=∠DAC+∠BAC=90°.∵EF⊥AB,∴EF∥AD.∵AC=EF,∴EF=AD.∴四边形ADFE是平行四边形.(3)∵四边形ADFE是平行四边形,12\n∴AE∥FD.∵∠EAC=∠EAF+∠BAC=60°+30°=90°,∴AE⊥AC.∴AC⊥DF.针对训练4(2022,东营)如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于点F,AB=BF.添加一个条件使四边形ABCD是平行四边形,下面四个条件中可选择的是(D)训练4题图A.AD=BCB.CD=BFC.∠A=∠CD.∠F=∠CDF【解析】正确选项是D.理由:∵∠F=∠CDF,∠BEF=∠CED,BE=CE,∴△BFE≌△CDE,CD∥AF.∴BF=CD.∵BF=AB,∴CD=AB.∴四边形ABCD是平行四边形.针对训练5(2022,海南)如图,▱ABCD的周长为36,对角线AC,BD相交于点O,E是CD的中点,BD=12,则△DOE的周长为(A)训练5题图A.15B.18C.21D.24【解析】∵▱ABCD的周长为36,∴BC+CD=18.∵OD=OB,DE=EC,∴OE+DE=(BC+CD)=9.∵BD=12,∴OD=BD=6.∴△DOE的周长为9+6=15.一、选择题1.(2022,黔西南州)如图,在▱ABCD中,已知AC=4cm.若△ACD的周长为13cm,则▱ABCD的周长为(D)第1题图A.26cmB.24cmC.20cmD.18cm【解析】∵AC=4cm,△ADC的周长为13cm,∴AD+DC=13-4=9(cm).∵四边形ABCD是平行四边形,∴AB=CD,AD=BC.∴▱ABCD的周长为2(AD+CD)=18cm.2.(2022,铜仁)如果一个多边形的内角和是外角和的3倍,那么这个多边形的边数是(A)A.8B.9C.10D.11【解析】根据题意,得180°·(n-2)=3×360°.解得n=8.12\n3.(2022,贵阳模拟)一个多边形的边数由原来的3增加到n时(n>3,且n为正整数),它的外角和(D)A.增加(n-2)×180°B.减小(n-2)×180°C.增加(n-1)×180°D.没有改变【解析】多边形的外角和等于360°,与边数无关.4.(2022,宜宾)在▱ABCD中,若∠BAD与∠CDA的角平分线交于点E,则△AED的形状是(B)A.锐角三角形B.直角三角形C.钝角三角形D.无法确定【解析】如答图.∵四边形ABCD是平行四边形,∴AB∥CD.∴∠BAD+∠ADC=180°.∵∠EAD=∠BAD,∠ADE=∠ADC,∴∠EAD+∠ADE=(∠BAD+∠ADC)=90°.∴∠E=90°.∴△ADE是直角三角形.第4题答图5.(2022,邯郸一模)已知▱ABCD,根据图中尺规作图的痕迹,判断下列结论不一定成立的是(C)第5题图A.∠DAE=∠BAEB.∠DEA=∠DABC.DE=BED.BC=DE【解析】A.由作法可知AE平分∠DAB,所以∠DAE=∠BAE,本选项不符合题意.B.∵CD∥AB,∴∠DEA=∠BAE=∠DAB,本选项不符合题意.C.无法证明DE=BE,本选项符合题意.D.易证∠DAE=∠DEA,∴AD=DE.∵AD=BC,∴BC=DE,本选项不符合题意.6.(2022,宁波)如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连接OE.若∠ABC=60°,∠BAC=80°,则∠1的度数为(B)第6题图A.50°B.40°C.30°D.20°【解析】∵∠ABC=60°,∠BAC=80°,∴∠BCA=180°-60°-80°=40°.∵对角线AC与BD相交于点O,E是边CD的中点,∴EO是△DBC的中位线.∴EO∥BC.∴∠1=∠ACB=40°.7.(2022,保定一模)如图,在▱ABCD中,AB=8,BC=5,以点A为圆心,以任意长为半径作弧,分别交AD,AB于点P,Q,再分别以点P,Q为圆心,大于PQ的长为半径作弧,两弧在∠DAB内交于点M,连接AM并延长交CD于点E,则CE的长为(A)12\n第7题图A.3B.5C.2D.6.5【解析】根据作图的方法,得AE平分∠DAB,∴∠DAE=∠EAB.∵四边形ABCD是平行四边形,∴DC∥AB,DC=AB=8,AD=BC=5.∴∠DEA=∠EAB.∴∠DAE=∠DEA.∴DE=AD=5.∴CE=DC-DE=8-5=3.8.(2022,安徽)在▱ABCD中,E,F是对角线BD上不同的两点.下列条件中,不能得出四边形AECF一定为平行四边形的是(B)A.BE=DFB.AE=CFC.AF∥CED.∠BAE=∠DCF【解析】如答图,连接AC与BD相交于点O.在▱ABCD中,OA=OC,OB=OD,要使四边形AECF为平行四边形,只需得到OE=OF即可.A.若BE=DF,则OB-BE=OD-DF,即OE=OF,故本选项不符合题意.B.若AE=CF,则无法判定OE=OF,故本选项符合题意.C.AF∥CE能够利用“AAS”证明△AOF≌△COE,从而得到OE=OF,故本选项不符合题意.D.∠BAE=∠DCF能够利用“ASA”证明△ABE≌△CDF,从而得到BE=DF,然后同选项A,故本选项不符合题意.第8题答图9.(2022,承德模拟)如图,在正五边形ABCDE中,AF∥CD,交DB的延长线于点F,则∠DFA等于(B)第9题图A.30°B.36°C.45°D.32°【解析】在正五边形ABCDE中,∠C=×(5-2)×180°=108°.∵正五边形ABCDE的边BC=CD,∴∠CBD=∠CDB.∴∠CDB=(180°-108°)=36°.∵AF∥CD,∴∠DFA=∠CDB=36°.10.(2022,枣庄薛城区模拟)如图,已知△ABC的面积为24,点D在线段AC上,点F在线段BC的延长线上,且BC=4CF,四边形DCFE是平行四边形,则图中阴影部分的面积为(C)12\n第10题图A.3B.4C.6D.8【解析】设△ABC中BC边上的高为h.∵四边形DCFE是平行四边形,∴DE=CF,DE∥CF.∵BC=4CF,∴DE=BC.∵S△ABC=BC·h=24.∴S阴影=S△ADE+S△DEB=DE·h=×BC·h=×BC·h=6.二、填空题11.(2022,常州)如图,在▱ABCD中,∠A=70°,DC=DB,则∠CDB=40°.第11题图【解析】∵四边形ABCD是平行四边形,∴∠A=∠C=70°.∵DC=DB,∴∠C=∠DBC=70°.∴∠CDB=180°-70°-70°=40°.12.(2022,临沂)如图,在▱ABCD中,AB=10,AD=6,AC⊥BC,则BD=4.第12题图【解析】∵四边形ABCD是平行四边形,∴BC=AD=6,OB=OD,OA=OC.∵AC⊥BC,∴AC==8.∴OC=4.∴OB==2.∴BD=2OB=4.13.(2022,赤峰)如图,P是▱ABCD的边AD上一点,E,F分别是PB,PC的中点.若▱ABCD的面积为16cm2,则△PEF的面积(阴影部分)是2cm2.第13题图【解析】∵▱ABCD的面积为16cm2,∴S△PBC=S▱ABCD=8cm2.∵E,F分别是PB,PC的中点,∴EF∥BC,且EF=BC.∴△PEF∽△PBC.∴=2,即=.∴S△PEF=2cm2.三、解答题14.(2022,大庆)如图,在Rt△ABC中,∠ACB=90°,D,E分别是AB,AC的中点,连接CD,过点E作EF∥DC交BC的延长线于点F.12\n(1)求证:四边形CDEF是平行四边形;(2)若四边形CDEF的周长是25cm,AC的长为5cm,求线段AB的长度. 第14题图【思路分析】(1)由三角形中位线定理推知ED∥FC,然后结合已知条件EF∥DC,利用两组对边平行得到四边形CDEF为平行四边形.(2)根据在直角三角形中,斜边上的中线等于斜边的一半得到AB=2DC,再结合由三角形中位线定理得到的2DE=BC,即可得出四边形CDEF的周长为AB+BC,故BC=25-AB,然后根据勾股定理即可求得AB的长.(1)证明:∵D,E分别是AB,AC的中点,∴ED∥FC.∵EF∥DC,∴四边形CDEF是平行四边形.(2)解:∵四边形CDEF是平行四边形,∴DC=EF,DE=CF.∵D,E分别是AB,AC的中点,∴BC=2DE,DC是Rt△ABC斜边AB上的中线.∴AB=2DC.∴四边形CDEF的周长为AB+BC.∵四边形CDEF的周长为25,∴BC=25-AB.∵在Rt△ABC中,∠ACB=90°,AC=5,∴AB2=BC2+AC2,即AB2=(25-AB)2+52.解得AB=13.∴AB的长为13cm.15.(2022,青岛)如图,在▱ABCD中,对角线AC与BD相交于点E,G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.第15题图【思路分析】(1)只要证明AB=CD,AF=CD即可解决问题.(2)四边形ACDF是矩形.先得四边形ACDF是平行四边形,再根据对角线相等的平行四边形是矩形判断即可.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∴∠AFC=∠DCG.∵GA=GD,∠AGF=∠CGD,∴△AGF≌△DGC.∴AF=DC.12\n∴AB=AF.(2)解:四边形ACDF是矩形.证明:∵AF=CD,AF∥CD,∴四边形ACDF是平行四边形.∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=120°.∴∠FAG=60°.∵AG=AB=AF,∴△AFG是等边三角形.∴AG=GF.∵△AGF≌△DGC,∴FG=CG.∵AG=GD,∴AD=CF.∴四边形ACDF是矩形.16.(2022,黄冈)如图,在▱ABCD中,分别以边BC,CD为边作等腰三角形BCF,等腰三角形CDE,使BF=BC,DE=CD,∠CBF=∠CDE,连接AF,AE.(1)求证:△ABF≌△EDA;(2)延长AB与CF交于点G.若AF⊥AE,求证:BF⊥BC.第16题图【思路分析】(1)只要证明AB=DE,FB=AD,∠ABF=∠ADE即可解决问题.(2)只要证明FB⊥AD即可解决问题.证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠ABC=∠ADC.∵BC=BF,CD=DE,∴BF=AD,AB=DE.∵∠ADE+∠ADC+∠CDE=360°,∠ABF+∠ABC+∠CBF=360°,∠CDE=∠CBF,∴∠ABF=∠ADE.∴△ABF≌△EDA.(2)如答图,延长FB交AD于点H.∵AE⊥AF,∴∠EAF=90°.∵△ABF≌△EDA,∴∠EAD=∠AFB.∵∠EAD+∠FAH=90°,∴∠FAH+∠AFB=90°.∴∠AHF=90°,即FB⊥AD.∵AD∥BC,∴FB⊥BC.12\n第16题答图1.(2022,眉山,导学号5892921)如图,在▱ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连接EF,BF.下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF.其中正确的结论共有(D)第1题图A.1个B.2个C.3个D.4个【解析】如答图,延长EF交BC的延长线于点G,取AB的中点H,连接FH.∵CD=2AD,DF=FC,∴CF=AD=CB.∴∠CFB=∠CBF.∵CD∥AB,∴∠CFB=∠FBH.∴∠CBF=∠FBH.∴∠ABC=2∠ABF,①正确.∵DE∥CG,∴∠D=∠FCG.∵DF=FC,∠DFE=∠CFG,∴△DFE≌△CFG.∴FE=FG.∵BE⊥AD,∴∠AEB=90°.∵AD∥BC,∴∠EBG=∠AEB=90°.∴BF=EF=FG,②正确.∵S△DFE=S△CFG,∴S四边形DEBC=S△EBG=2S△BEF,③正确.∵AH=HB,DF=CF,AB=CD,∴CF=BH.∵CF∥BH,∴四边形BCFH是平行四边形.∵CF=BC,∴四边形BCFH是菱形.∴∠BFC=∠BFH.∵FE=FB,FH∥AD,BE⊥AD,∴FH⊥BE.∴∠BFH=∠EFH=∠DEF.∴∠EFC=3∠DEF,④正确.第1题答图2.(2022,株洲,导学号5892921)如图,在▱ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=3,在DB的延长线上取一点P,满足∠ABD=∠MAP+∠PAB,则AP=6.第2题图【解析】∵BD=CD,AB=CD,∴BD=BA.∵AM⊥BD,DN⊥AB,∴DN=AM=3.∵∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,∴∠P=∠PAM.∴△APM是等腰直角三角形,∴AP=AM=6.3.(2022,重庆A,导学号5892921)如图,在▱ABCD中,O是对角线AC的中点,E是BC上一点,且AB=AE,连接EO并延长交AD于点F.过点B作AE的垂线,垂足为H,交AC于点G.12\n(1)若AH=3,HE=1,求△ABE的面积;(2)若∠ACB=45°,求证:DF=CG.第3题图【思路分析】(1)利用勾股定理即可得出BH的长,进而运用公式得出△ABE的面积.(2)过点A作AM⊥BC于点M,交BG于点K,过点G作GN⊥BC于点N,判定△AME≌△BNG,可得ME=NG,进而得出BE=GC,再判定△AFO≌△CEO,可得AF=CE,即可得到DF=BE=CG.(1)解:∵AH=3,HE=1,∴AB=AE=4.在Rt△ABH中,BH==,∴S△ABE=AE·BH=×4×=2.(2)证明:如答图,过点A作AM⊥BC于点M,交BG于点K,过点G作GN⊥BC于点N,则∠AMB=∠AME=∠BNG=90°.∵∠ACB=45°,∴∠MAC=∠NGC=45°.∵AB=AE,∴BM=EM=BE,∠BAM=∠EAM.∵AE⊥BG,∴∠AHK=90°=∠BMK.∵∠AKH=∠BKM,∴∠MAE=∠NBG.设∠BAM=∠MAE=∠NBG=α,则∠BAG=45°+α,∠BGA=∠GCN+∠GBC=45°+α.∴∠BAG=∠BGA.∴AB=BG.∴AE=BG.∴△AME≌△BNG(AAS).∴ME=NG.∵在等腰直角三角形CNG中,NG=NC,∴GC=NG=ME=BE.∴BE=GC.∵O是AC的中点,∴OA=OC.∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∴∠OAF=∠OCE,∠AFO=∠CEO.∴△AFO≌△CEO(AAS).∴AF=CE.∴AD-AF=BC-EC,即DF=BE.∴DF=BE=CG.第3题答图12
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
河北省2022年中考数学总复习第一编教材知识梳理篇第4章图形的初步认识与三角形四边形第5节多边形与平行四边形精讲试题
河北省2022年中考数学复习四边形第28讲正方形与四边形综合试题含解析
河北省2022年中考数学复习四边形第27讲矩形与菱形试题含解析
山东省德州市2022年中考数学一轮复习第五章多边形与四边形第17讲多边形与平行四边形过预测练习
北京市2022年中考数学总复习第六单元四边形课时训练26多边形与平行四边形试题
全国通用版2022年中考数学复习第五单元四边形第20讲平行四边形与多边形练习
【火线100天】2022中考数学 第19讲 多边形与平行四边形
2022年中考数学专题复习讲座 第二十讲 多边形与平行四边形(学生版)
2022年中考数学专题复习讲座 第二十讲 多边形与平行四边形
2022年中考数学一轮复习第十八讲多边形与平行四边形专题训练
文档下载
收藏
所属:
中考 - 二轮专题
发布时间:2022-08-25 20:18:18
页数:12
价格:¥3
大小:803.77 KB
文章作者:U-336598
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划