首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
模拟考试
>
2019-2020学年辽宁省鞍山一中高考数学一模试卷(理科)
2019-2020学年辽宁省鞍山一中高考数学一模试卷(理科)
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/17
2
/17
剩余15页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
辽宁省鞍山一中高考数学一模试卷(理科) 一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<1},B=x{x|x2﹣x﹣6<0},则( )A.A∩B={x|x<1}B.A∪B=RC.A∪B={x|x<2}D.A∩B={x|﹣2<x<1}2.(5分)在下列区间中,函数f(x)=ex+4x﹣3的零点所在的区间为( )A.B.C.D.3.(5分)设命题p:∃n>1,n2>2n,则¬p为( )A.∀n>1,n2>2nB.∃n≤1,n2≤2nC.∀n>1,n2≤2nD.∃n>1,n2≤2n4.(5分)函数的对称轴为( )A.B.C.D.5.(5分)指数函数f(x)=ax(a>0,且a≠1)在R上是减函数,则函数在其定义域上的单调性为( )A.单调递增B.单调递减C.在(0,+∞)上递增,在(﹣∞,0)上递减D.在(0,+∞)上递减,在(﹣∞,0)上递增6.(5分)设a=log510,b=log612,c=1+log72,则( )A.c>b>aB.b>c>aC.a>c>bD.a>b>c7.(5分)已知函数f(x)=ln(﹣x2﹣2x+3),则f(x)的增区间为( )A.(﹣∞,﹣1)B.(﹣3,﹣1)C.[﹣1,+∞)D.[﹣1,1)8.(5分)函数f(x)=x3﹣3x﹣1,若对于区间[﹣3,2]上的任意x1,x2都有|f(x1)﹣f(x2)|≤t,则实数t的最小值是( )第17页共17页,A.20B.18C.3D.09.(5分)如图,半径为1的半圆O与等边三角形ABC夹在两平行线l1,l2之间,l∥l1,l与半圆相交于F,G两点,与三角形ABC两边相交于E,D两点.设弧的长为x(0<x<π),y=EB+BC+CD,若l从l1平行移动到l2,则函数y=f(x)的图象大致是( )A.B.C.D.10.(5分)已知函数f(x)的定义域为R的奇函数,当x∈[0,1]时,f(x)=x3,且∀x∈R,f(x)=f(2﹣x),则f(2017.5)=( )A.B.C.0D.111.(5分)某珠宝店丢了一件珍贵珠宝,以下四人中只有一人说真话,只有一人偷了珠宝.甲:我没有偷;乙:丙是小偷;丙:丁是小偷;丁:我没有偷.根据以上条件,可以判断偷珠宝的人是( )A.甲B.乙C.丙D.丁12.(5分)已知函数f(x)=,若f(f(m))≥0,则实数m的取值范围是( )A.[﹣2,2]B.[﹣2,2]∪[4,+∞)C.[﹣2,2+]D.[﹣2,2+]∪[4,+∞)第17页共17页, 二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)若,则= .14.(5分)已知f(x)为奇函数,当x<0时,f(x)=x4﹣x,则曲线y=f(x)在x=1处的切线方程是 .15.(5分)由y=x2﹣2和y=x围成的封闭图形面积为 .16.(5分)设函数,则使得f(x)>f(2x﹣1)成立的x的取值范围是 . 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)设a∈R,命题q:∀x∈R,x2+ax+1>0,命题p:∃x∈[1,2],满足(a﹣1)x﹣1>0.(1)若命题p∧q是真命题,求a的范围;(2)(¬p)∧q为假,(¬p)∨q为真,求a的取值范围.18.(12分)已知f(x)=Asin(ωx+ϕ)(过点,且当时,函数f(x)取得最大值1.(1)将函数f(x)的图象向右平移个单位得到函数g(x),求函数g(x)的表达式;(2)在(1)的条件下,函数h(x)=f(x)+g(x)+2cos2x﹣1,求h(x)在上的值域.19.(12分)已知函数为奇函数.(1)判断f(x)的单调性并证明;(2)解不等式.20.(12分)已知f(x)=sinx,,,,第17页共17页,.(1)求的值.(2),求g(x)的值域.21.(12分)已知函数f(x)=1n(x﹣1)﹣k(x﹣1)+1(1)求函数f(x)的单调区间;(2)若f(x)≤0恒成立,试确定实数k的取值范围;(3)证明:且n>1)22.(12分)已知函数f(x)=e﹣x﹣ax(x∈R).(1)当a=﹣1时,求函数f(x)的最小值;(2)若x≥0时,f(﹣x)+ln(x+1)≥1,求实数a的取值范围. 第17页共17页,辽宁省鞍山一中高考数学一模试卷(理科)参考答案与试题解析 一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<1},B=x{x|x2﹣x﹣6<0},则( )A.A∩B={x|x<1}B.A∪B=RC.A∪B={x|x<2}D.A∩B={x|﹣2<x<1}【解答】解:集合A={x|x<1},B=x{x|x2﹣x﹣6<0}={x|﹣2<x<3},则A∩B={x|﹣2<x<1},A∪B={x|x<3},故选D. 2.(5分)在下列区间中,函数f(x)=ex+4x﹣3的零点所在的区间为( )A.B.C.D.【解答】解:∵函数f(x)=ex+4x﹣3,∴f′(x)=ex+4>0,∴函数f(x)=ex+4x﹣3在(﹣∞,+∞)上为增函数,∵f()=+1﹣3<0,f()=+2﹣3=﹣1>0,∴f()•f()<0,∴函数f(x)=ex+4x﹣3的零点所在的区间为(,)故选:C. 第17页共17页,3.(5分)设命题p:∃n>1,n2>2n,则¬p为( )A.∀n>1,n2>2nB.∃n≤1,n2≤2nC.∀n>1,n2≤2nD.∃n>1,n2≤2n【解答】解:因为特称命题的否定是全称命题,所以命题p:∃n>1,n2>2n,则¬p为∀n>1,n2≤2n.故选:C. 4.(5分)函数的对称轴为( )A.B.C.D.【解答】解:f(x)=sin2x+cos2x=2sin(2x+),令2x+=+kπ,解得x=+,k∈Z.故选:D. 5.(5分)指数函数f(x)=ax(a>0,且a≠1)在R上是减函数,则函数在其定义域上的单调性为( )A.单调递增B.单调递减C.在(0,+∞)上递增,在(﹣∞,0)上递减D.在(0,+∞)上递减,在(﹣∞,0)上递增【解答】解:∵指数函数f(x)=ax在R上是减函数,∴0<a<1,∴﹣2<a﹣2<﹣1,而函数y=x2在(﹣∞,0)上递减,在区间(0,+∞)上递增;∴g(x)在区间(﹣∞,0)上递增,在区间(0,+∞)上递减;故选:C. 第17页共17页,6.(5分)设a=log510,b=log612,c=1+log72,则( )A.c>b>aB.b>c>aC.a>c>bD.a>b>c【解答】解:∵a=log510=1+log52,b=log612=1+log62,c=1+log72,log52>log62>log72,∴a>b>c.故选:D. 7.(5分)已知函数f(x)=ln(﹣x2﹣2x+3),则f(x)的增区间为( )A.(﹣∞,﹣1)B.(﹣3,﹣1)C.[﹣1,+∞)D.[﹣1,1)【解答】解:由﹣x2﹣2x+3>0,解得:﹣3<x<1,而y=﹣x2﹣2x+3的对称轴是x=﹣1,开口向下,故y=﹣x2﹣2x+3在(﹣3,﹣1)递增,在(﹣1,1)递减,由y=lnx递增,根据复合函数同增异减的原则,得f(x)在(﹣3,﹣1)递增,故选:B. 8.(5分)函数f(x)=x3﹣3x﹣1,若对于区间[﹣3,2]上的任意x1,x2都有|f(x1)﹣f(x2)|≤t,则实数t的最小值是( )A.20B.18C.3D.0【解答】解:对于区间[﹣3,2]上的任意x1,x2都有|f(x1)﹣f(x2)|≤t,等价于对于区间[﹣3,2]上的任意x,都有f(x)max﹣f(x)min≤t,∵f(x)=x3﹣3x﹣1,∴f′(x)=3x2﹣3=3(x﹣1)(x+1),第17页共17页,∵x∈[﹣3,2],∴函数在[﹣3,﹣1]、[1,2]上单调递增,在[﹣1,1]上单调递减∴f(x)max=f(2)=f(﹣1)=1,f(x)min=f(﹣3)=﹣19∴f(x)max﹣f(x)min=20,∴t≥20∴实数t的最小值是20,故选A. 9.(5分)如图,半径为1的半圆O与等边三角形ABC夹在两平行线l1,l2之间,l∥l1,l与半圆相交于F,G两点,与三角形ABC两边相交于E,D两点.设弧的长为x(0<x<π),y=EB+BC+CD,若l从l1平行移动到l2,则函数y=f(x)的图象大致是( )A.B.C.D.【解答】解:当x=0时,y=EB+BC+CD=BC=;当x=π时,此时y=AB+BC+CA=3×=2;当x=时,∠FOG=,三角形OFG为正三角形,此时AM=OH=,第17页共17页,在正△AED中,AE=ED=DA=1,∴y=EB+BC+CD=AB+BC+CA﹣(AE+AD)=3×﹣2×1=2﹣2.如图.又当x=时,图中y0=+(2﹣)=>2﹣2.故当x=时,对应的点(x,y)在图中红色连线段的下方,对照选项,D正确.故选D. 10.(5分)已知函数f(x)的定义域为R的奇函数,当x∈[0,1]时,f(x)=x3,且∀x∈R,f(x)=f(2﹣x),则f(2017.5)=( )A.B.C.0D.1【解答】解:∀x∈R,f(x)=f(2﹣x),∴f(x+2)=f(﹣x)=﹣f(x),故f(2017.5)=f(1009×2﹣0.5)=f(0.5)=f(0.5)=(0.5)3=,故选:B. 11.(5分)某珠宝店丢了一件珍贵珠宝,以下四人中只有一人说真话,只有一人偷了珠宝.甲:我没有偷;乙:丙是小偷;丙:丁是小偷;丁:我没有偷.根据以上条件,可以判断偷珠宝的人是( )A.甲B.乙C.丙D.丁第17页共17页,【解答】解:假如甲:我没有偷是真的,乙:丙是小偷、丙:丁是小偷是假的,丁:我没有偷就是真的,与他们四人中只有一人说真话矛盾,假如甲:我没有偷是假的,那么丁:我没有偷就是真的,乙:丙是小偷、丙:丁是小偷是假的,成立,故选:A. 12.(5分)已知函数f(x)=,若f(f(m))≥0,则实数m的取值范围是( )A.[﹣2,2]B.[﹣2,2]∪[4,+∞)C.[﹣2,2+]D.[﹣2,2+]∪[4,+∞)【解答】解:令f(m)=t⇒f(t)≥0⇒⇒﹣1≤t≤1;⇒t≥3下面求解﹣1≤f(m)≤1和f(m)≥3,⇒﹣2≤m≤1,⇒1<m≤2+,⇒m无解,⇒m≥4,综上实数m的取值范围是[﹣2,2+]∪[4,+∞).故选:D. 二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)若,则= .【解答】解:,第17页共17页,则:=,==.故答案为:. 14.(5分)已知f(x)为奇函数,当x<0时,f(x)=x4﹣x,则曲线y=f(x)在x=1处的切线方程是 5x+y﹣3=0 .【解答】解:f(x)为奇函数,当x<0时,f(x)=x4﹣x,可得x>0时,﹣x<0,f(﹣x)=x4+x,又f(﹣x)=﹣f(x),可得f(x)=﹣x4﹣x,(x>0),则f′(x)=﹣4x3﹣1(x>0),可得y=f(x)在x=1处的切线斜率为﹣4﹣1=﹣5,切点为(1,﹣2),则y=f(x)在x=1处的切线方程为y+2=﹣5(x﹣1),即为5x+y﹣3=0.故答案为:5x+y﹣3=0. 15.(5分)由y=x2﹣2和y=x围成的封闭图形面积为 .【解答】解:联立,解得:,或,则A(2,2),B(﹣1,﹣1),S=(x﹣x2+2)dx=(x2﹣x3+2x)第17页共17页,=(×4﹣×8+2×2)﹣(×1+﹣2)=,∴y=x2﹣2和y=x围成的封闭图形面积,故答案为:. 16.(5分)设函数,则使得f(x)>f(2x﹣1)成立的x的取值范围是 .【解答】解:∵函数,f(﹣x)===f(x),故函数为偶函数,当x>0时,=>0恒成立函数为增函数,若使得f(x)>f(2x﹣1)成立,则|x|>|2x﹣1|,即x2>(2x﹣1)2,第17页共17页,解得:x∈,故答案为: 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)设a∈R,命题q:∀x∈R,x2+ax+1>0,命题p:∃x∈[1,2],满足(a﹣1)x﹣1>0.(1)若命题p∧q是真命题,求a的范围;(2)(¬p)∧q为假,(¬p)∨q为真,求a的取值范围.【解答】解:(1)p真,则或得;q真,则a2﹣4<0,得﹣2<a<2,∴p∧q真,.(2)由(¬p)∧q为假,(¬p)∨q为真⇒p、q同时为假或同时为真,若p假q假,则,⇒a≤﹣2,若p真q真,则,⇒综上a≤﹣2或. 18.(12分)已知f(x)=Asin(ωx+ϕ)(过点,且当时,函数f(x)取得最大值1.(1)将函数f(x)的图象向右平移个单位得到函数g(x),求函数g(x)的表达式;(2)在(1)的条件下,函数h(x)=f(x)+g(x)+2cos2x﹣1,求h(x)在上的值域.第17页共17页,【解答】解:(1)由题意可得A=1,由函数过,得,结合范围,由,∵0<ω<4,∴可得:ω=2,可得:,∴.(2)∵,由于,可得:,∴h(x)在上的值域为[﹣1,2]. 19.(12分)已知函数为奇函数.(1)判断f(x)的单调性并证明;(2)解不等式.【解答】解:(1)由已知f(﹣x)=﹣f(x),∴∴,a=﹣2,∵,∴为单调递增函数.(2)∵,∴,而f(x)为奇函数,∴∵f(x)为单调递增函数,∴,∴,∴﹣3≤log2x≤1,第17页共17页,∴. 20.(12分)已知f(x)=sinx,,,,.(1)求的值.(2),求g(x)的值域.【解答】解:(1)∵,∴,∵,∴,∴,,又,∴,∴∴=.(2)令,则∴g(x)的值域为. 第17页共17页,21.(12分)已知函数f(x)=1n(x﹣1)﹣k(x﹣1)+1(1)求函数f(x)的单调区间;(2)若f(x)≤0恒成立,试确定实数k的取值范围;(3)证明:且n>1)【解答】解:(1)∵f(x)=1n(x﹣1)﹣k(x﹣1)+1,∴x>1,,∵x>1,∴当k≤0时,>0,f(x)在(1,+∞)上是增函数;当k>0时,f(x)在(1,1+)上是增函数,在(1+,+∞)上为减函数.(2)∵f(x)≤0恒成立,∴∀x>1,ln(x﹣1)﹣k(x﹣1)+1≤0,∴∀x>1,ln(x﹣1)≤k(x﹣1)﹣1,∴k>0.由(1)知,f(x)max=f(1+)=ln≤0,解得k≥1.故实数k的取值范围是[1,+∞).(3)令k=1,则由(2)知:ln(x﹣1)≤x﹣2对x∈(1,+∞)恒成立,即lnx≤x﹣1对x∈(0,+∞)恒成立.取x=n2,则2lnn≤n2﹣1,即,n≥2,∴且n>1). 22.(12分)已知函数f(x)=e﹣x﹣ax(x∈R).(1)当a=﹣1时,求函数f(x)的最小值;(2)若x≥0时,f(﹣x)+ln(x+1)≥1,求实数a的取值范围.第17页共17页,【解答】解:(1)当a=﹣1时,f(x)=e﹣x+x,则f′(x)=﹣+1.令f'(x)=0,得x=0.当x<0时,f'(x)<0;当x>0时,f'(x)>0.∴函数f(x)在区间(﹣∞,0)上单调递减,在区间(0,+∞)上单调递增.∴当x=0时,函数f(x)取得最小值,其值为f(0)=1f(x)的最小值为1.(2)若x≥0时,f(﹣x)+ln(x+1)≥1,即ex+ax+ln(x+1)﹣1≥0(*)令g(x)=ex+ax+ln(x+1)﹣1,则①若a≥﹣2,由(1)知e﹣x+x≥1,即e﹣x≥1﹣x,故ex≥1+x∴函数g(x)在区间[0,+∞)上单调递增,∴g(x)≥g(0)=0.∴(*)式成立.②若a<﹣2,令,则∴函数ϕ(x)在区间[0,+∞)上单调递增,由于ϕ(0)=2+a<0,.故∃x0∈(0,﹣a),使得ϕ(x0)=0,则当0<x<x0时,ϕ(x)<ϕ(x0)=0,即g'(x)<0.∴函数g(x)在区间(0,x0)上单调递减,∴g(x0)<g(0)=0,即(*)式不恒成立.综上所述,实数a的取值范围是[﹣2,+∞). 第17页共17页
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
2019-2020学年安徽省淮北市高考数学一模试卷(理科)
2019-2020学年甘肃省张掖市高考数学一模试卷(理科)
2019-2020学年广东省茂名市高考数学一模试卷(理科)
2019-2020学年河南省安阳市高考数学一模试卷(理科)
2019-2020学年河南省开封市高考数学一模试卷(理科)
2019-2020学年湖北省荆州市高考数学一模试卷(理科)
2019-2020学年湖南省株洲市高考数学一模试卷(理科)
2019-2020学年辽宁省鞍山一中高考数学一模试卷(文科)
2019-2020学年辽宁省沈阳市高考数学一模试卷(理科)
2019-2020学年陕西省榆林市高考数学一模试卷(理科)
文档下载
收藏
所属:
高考 - 模拟考试
发布时间:2022-05-19 09:38:11
页数:17
价格:¥5
大小:312.77 KB
文章作者:yuanfeng
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划