首页

2019-2020学年湖北省荆州市高考数学一模试卷(文科)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/17

2/17

剩余15页未读,查看更多内容需下载

湖北省荆州市高考数学一模试卷(文科) 一、选择题:在每小题给出的四个选项中,只有一项正确,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.1.(3分)已知集合A={x|≥0,x∈R},B={y|y=3x2+1,x∈R}.则A∩B=(  )A.∅B.(1,+∞)C.[1,+∞)D.(﹣∞,0)∪(1,+∞)2.(3分)下列函数是奇函数且在定义域内是增函数的是(  )A.y=exB.y=tanxC.y=x3﹣xD.y=ln3.(3分)已知角α的终边经过点P(﹣5,﹣12),则sin(+α)的值等于(  )A.﹣B.﹣C.D.4.(3分)若a=20.5,b=logπ3,c=log2sin,则(  )A.a>b>cB.b>a>cC.c>a>bD.b>c>a5.(3分)在等差数列{an}中,若a3+a4+a5=3,a8=8,则a12的值是(  )A.15B.30C.31D.646.(3分)函数的零点所在区间是(  )A.(0,1)B.(1,2)C.(3,4)D.(4,+∞)7.(3分)将函数y=sin(2x+φ)的图象向右平移个周期后,所得图象关于y轴对称,则φ的最小正值是(  )A.B.πC.D.2π8.(3分)若,,则sinα的值为(  )A.B.C.D.9.(3分)已知数列{an}是公差不为0的等差数列,且a1,a3,a7为等比数列{bn}的连续三项,则的值为(  )第17页共17页,A.B.4C.2D.10.(3分)设△ABC的内角A,B,C的对边分别为a,b,c.已知,,sinB=2sinC,则△ABC的面积是(  )A.B.C.D.11.(3分)函数f(x)=(其中e为自然对数的底数)的图象大致为(  )A.B.C.D.12.(3分)若函数f(x)=mlnx+x2﹣mx在区间(0,+∞)内单调递增.则实数m的取值范围为(  )A.[0,8]B.(0,8]C.(﹣∞,0]∪[8,+∞)D.(﹣∞,0)∪(8,+∞) 二、填空题:13.(3分)曲线C:f(x)=sinx+ex+2在x=0处的切线方程为  .14.(3分)函数f(x)=x3﹣x2+2在(0,+∞)上的最小值为  .15.(3分)已知实数x、y满足,则z=2x﹣2y﹣1的最小值是  .16.(3分)已知等比数列{an}的公比不为﹣1,设Sn为等比数列{an}第17页共17页,的前n项和,S12=7S4,则=  . 三、解答题:解答题应写出文字说明,证明过程或演算步骤.17.已知函数.(1)若f(x)=0,,求x的值;(2)将函数f(x)的图象向左平移个单位,再将图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),得到函数g(x)的图象,若曲线y=h(x)与y=g(x)的图象关于直线对称,求函数h(x)在上的值域.18.设△ABC的内角A,B,C的对边分别为a,b,c,.(1)若,△ABC的面积为,求c;(2)若,求2c﹣a的取值范围.19.已知数列{an}的前n项和为Sn,且满足Sn+n=2an(n∈N*).(1)证明:数列{an+1}为等比数列,并求数列{an}的通项公式;(2)若bn=nan+n,数列{bn}的前n项和为Tn,求满足不等式的n的最小值.20.已知函数f(x)=﹣x2+ax﹣lnx(a∈R).(1)若函数f(x)是单调递减函数,求实数a的取值范围;(2)若函数f(x)在区间(0,3)上既有极大值又有极小值,求实数a的取值范围.21.已知函数.(1)讨论函数f(x)的单调性;(2)若函数f(x)在定义域内恒有f(x)≤0,求实数a的取值范围. 第17页共17页,请考生在第22、23题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,作答时请用2B铅笔在答题卡将所选题号后的方框途黑.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,曲线C的参数方程为(α为参数).(1)求曲线C的普通方程;(2)在以O为极点,x正半轴为极轴的极坐标系中,直线l方程为,已知直线l与曲线C相交于A、B两点,求|AB|. [选修4-5:不等式选讲]23.已知函数f(x)=|x﹣a|,不等式f(x)≤3的解集为[﹣6,0].(1)求实数a的值;(2)若f(x)+f(x+5)≥2m对一切实数x恒成立,求实数m的取值范围. 第17页共17页,湖北省荆州市高考数学一模试卷(文科)参考答案与试题解析 一、选择题:在每小题给出的四个选项中,只有一项正确,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.1.(3分)已知集合A={x|≥0,x∈R},B={y|y=3x2+1,x∈R}.则A∩B=(  )A.∅B.(1,+∞)C.[1,+∞)D.(﹣∞,0)∪(1,+∞)【解答】解:∵集合A={x|≥0,x∈R}={x|x≤0或x>1},B={y|y=3x2+1,x∈R}={y|y≥1}.∴A∩B={x|y>1}=(1,+∞).故选:B. 2.(3分)下列函数是奇函数且在定义域内是增函数的是(  )A.y=exB.y=tanxC.y=x3﹣xD.y=ln【解答】解:函数y=ex,不是奇函数,不满足题意;函数y=tanx是奇函数,但在定义域内图象是不连续的,不是增函数,不满足题意;函数y=x3﹣x是奇函数,当x∈(﹣,)时,y′=3x2﹣1<0为减函数,不满足题意;函数y=ln是奇函数,在定义域(﹣2,2)上内函数为增函数,外函数y=lnt也为增函数,故函数y=ln在定义域内为增函数,满足题意;故选:D 3.(3分)已知角α的终边经过点P(﹣5,﹣12),则sin(+α)的值等于(  )第17页共17页,A.﹣B.﹣C.D.【解答】解:∵角α的终边经过点P(﹣5,﹣12),则sin(+α)=﹣cosα=﹣=,故选:C. 4.(3分)若a=20.5,b=logπ3,c=log2sin,则(  )A.a>b>cB.b>a>cC.c>a>bD.b>c>a【解答】解:,由指对函数的图象可知:a>1,0<b<1,c<0,故选A 5.(3分)在等差数列{an}中,若a3+a4+a5=3,a8=8,则a12的值是(  )A.15B.30C.31D.64【解答】解:设等差数列{an}的公差为d,∵a3+a4+a5=3,a8=8,∴3a4=3,即a1+3d=1,a1+7d=8,联立解得a1=﹣,d=则a12=﹣+×11=15.故选:A. 6.(3分)函数的零点所在区间是(  )A.(0,1)B.(1,2)C.(3,4)D.(4,+∞)【解答】解:∵连续减函数,∴f(3)=2﹣log23>0,f(4)=﹣log24<0,∴函数的零点所在的区间是(3,4),故选:C. 第17页共17页,7.(3分)将函数y=sin(2x+φ)的图象向右平移个周期后,所得图象关于y轴对称,则φ的最小正值是(  )A.B.πC.D.2π【解答】解:函数y=sin(2x+φ)的图象向右平移个周期后,得到:y=sin[2(x﹣)+φ]=sin(2x﹣+φ),得到的函数的图象关于y轴对称,则:(k∈Z),解得:φ=kπ+π(k∈Z),当k=0时,φ=π.故选:B. 8.(3分)若,,则sinα的值为(  )A.B.C.D.【解答】解:∵,,可得:sinα>0,∴cosα+sinα=,可得:cosα=+sinα,又∵sin2α+cos2α=1,可得:sin2α+(+sinα)2=1,整理可得:2sin2α+sinα﹣=0,∴解得:sinα=,或﹣(舍去).故选:A. 9.(3分)已知数列{an}是公差不为0的等差数列,且a1,a3,a7为等比数列{bn}的连续三项,则的值为(  )A.B.4C.2D.【解答】解:数列{an}是公差d不为0的等差数列,且a1,a3,a7为等比数列{bn}第17页共17页,的连续三项,∴=a1•a7,可得=a1(a1+6d),化为:a1=2d≠0.∴公比q====2.则==.故选:A. 10.(3分)设△ABC的内角A,B,C的对边分别为a,b,c.已知,,sinB=2sinC,则△ABC的面积是(  )A.B.C.D.【解答】解:∵,,sinB=2sinC,可得:b=2c.sinA==,∴由a2=b2+c2﹣2bccosA,可得:8=4c2+c2﹣3c2,解得c=2,b=4.∴S△ABC=bcsinA=×2×4×=.故选:A. 11.(3分)函数f(x)=(其中e为自然对数的底数)的图象大致为(  )A.B.C.第17页共17页,D.【解答】解:f(﹣x)====f(x),∴f(x)是偶函数,故f(x)图形关于y轴对称,排除B,D;又x→0时,ex+1→2,x(ex﹣1)→0,∴→+∞,排除C,故选A. 12.(3分)若函数f(x)=mlnx+x2﹣mx在区间(0,+∞)内单调递增.则实数m的取值范围为(  )A.[0,8]B.(0,8]C.(﹣∞,0]∪[8,+∞)D.(﹣∞,0)∪(8,+∞)【解答】解:f′(x)=+2x﹣m=,若f(x)在(0,+∞)递增,则2x2﹣mx+m≥0在(0,+∞)恒成立,即m(x﹣1)≤2x2在(0,+∞)递增,①x∈(0,1)时,只需m≥在(0,1)恒成立,令p(x)=,x∈(0,1),则p′(x)==<0,故p(x)在(0,1)递减,x→0时,p(x)→0,x→1时,p(x)→﹣∞,故p(x)<0,m≥0;②x=1时,m≥0,第17页共17页,③x∈(1,+∞)时,只需m≤在(1,+∞)恒成立,令q(x)=,x∈(1,+∞),则q′(x)==,令q′(x)>0,解得:x>2,令q′(x)<0,解得:x<2,故q(x)在(1,2)递减,在(2,+∞)递增,故q(x)的最小值是q(2)=8,故m≤8,综上,m∈[0,8].故选:A. 二、填空题:13.(3分)曲线C:f(x)=sinx+ex+2在x=0处的切线方程为 y=2x+3 .【解答】解:∵f(x)=sinx+ex+2,∴f(x)′=cosx+ex,∴曲线f(x)=sinx+ex+2在点P(0,3)处的切线的斜率为:k=cos0+e0=2,∴曲线f(x)=sinx+ex+2在点P(0,3)处的切线的方程为:y=2x+3,故答案为y=2x+3. 14.(3分)函数f(x)=x3﹣x2+2在(0,+∞)上的最小值为  .【解答】解:函数f(x)=x3﹣x2+2在(0,+∞),可得f′(x)=3x2﹣2x,令3x2﹣2x=0,可得x=0或x=,当x∈(0,)时,f′(x)<0,函数是减函数;x∈(,+∞)时,f′(x)>0,函数是增函数,所以x=是函数的极小值也最小值,所以f(x)min==.故答案为:. 第17页共17页,15.(3分)已知实数x、y满足,则z=2x﹣2y﹣1的最小值是  .【解答】解:由约束条件作出可行域如图,联立,解得A(,),化目标函数z=2x﹣2y﹣1为,由图可知,当直线过点时z取得最小值,把点的坐标代入目标函数得,故答案为:. 16.(3分)已知等比数列{an}的公比不为﹣1,设Sn为等比数列{an}的前n项和,S12=7S4,则= 3 .【解答】解:设等比数列{an}的公比为q,q≠±1,∵S12=7S4,∴=7×,化为:q8+q4﹣6=0,q4=2.则=1+q4=3.故答案为:3. 第17页共17页,三、解答题:解答题应写出文字说明,证明过程或演算步骤.17.已知函数.(1)若f(x)=0,,求x的值;(2)将函数f(x)的图象向左平移个单位,再将图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),得到函数g(x)的图象,若曲线y=h(x)与y=g(x)的图象关于直线对称,求函数h(x)在上的值域.【解答】解:==.(1)由f(x)=0,得,∴,∴,或,k∈Z.又∵,∴x=或0或;(2)将函数f(x)的图象向左平移个单位,可得函数图象的解析式为y==2cos2x+1,再将图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),得到函数g(x)=2cosx+1,又曲线y=h(x)与y=g(x)的图象关于直线对称,∴=2sinx+1,∵x∈,∴sinx∈.故函数h(x)的值域为(0,3]. 18.设△ABC的内角A,B,C的对边分别为a,b,c,.(1)若,△ABC的面积为,求c;第17页共17页,(2)若,求2c﹣a的取值范围.【解答】(本题满分为12分)解:(1)由三角形面积公式,,因为,,所以a=2.(4分)由余弦定理,.(6分)(2)由正弦定理,所以a=2sinA,c=2sinC.(8分)因为.于是.(10分)因为C∈∈,所以∈.故2c﹣a的取值范围为.(12分) 19.已知数列{an}的前n项和为Sn,且满足Sn+n=2an(n∈N*).(1)证明:数列{an+1}为等比数列,并求数列{an}的通项公式;(2)若bn=nan+n,数列{bn}的前n项和为Tn,求满足不等式的n的最小值.【解答】(1)证明:当n=1时,a1+1=2a1,∴a1=1.∵Sn+n=2an,n∈N*,∴当n≥2时,Sn﹣1+n﹣1=2an﹣1,两式相减得:an+1=2an﹣2an﹣1,即an=2an﹣1+1,∴an+1=2(an﹣1+1),∴数列{an+1}为以2为首项,2为公比的等比数列,∴,第17页共17页,则,n∈N*;(2)解:∵,∴,∴,两式相减得:,∴,由,得,设,∵>0,∴数列{cn}为递增数列,∵,,∴满足不等式的n的最小值为11. 20.已知函数f(x)=﹣x2+ax﹣lnx(a∈R).(1)若函数f(x)是单调递减函数,求实数a的取值范围;(2)若函数f(x)在区间(0,3)上既有极大值又有极小值,求实数a的取值范围.【解答】解:(1),∵函数f(x)是单调递减函数,∴f'(x)≤0对(0,+∞)恒成立,(3分)∴﹣2x2+ax﹣1≤0对(0,+∞)恒成立,即,∵(当且仅当2x=,即x=时取等号),第17页共17页,∴(7分)(2)∵函数f(x)在(0,3)上既有极大值又有极小值.∴在(0,3)上有两个相异实根,即2x2﹣ax+1=0在(0,3)上有两个相异实根,(9分),即.(12分) 21.已知函数.(1)讨论函数f(x)的单调性;(2)若函数f(x)在定义域内恒有f(x)≤0,求实数a的取值范围.【解答】解:(1),(1分)当a≤0时,f'(x)<0,则f(x)在(0,+∞)上递减;(3分)当a>0时,令f'(x)=0,得(负根舍去).(4分)当f'(x)>0得,;令f'(x)<0,得,∴上递增,在(上递减.(6分)(2)当a=0时,f(x)=﹣x2<0,符合题意.(7分)当a>0时,,∵a>0,∴,∴,∴0<a≤2.(9分)当a<0时,在(0,+∞)上递减,且的图象在(0,+∞)上只有一个交点,设此交点为(x0,y0),则当x∈(0,x0)时,f(x)>0,故当a<0时,不满足f(x)≤0.(11分)第17页共17页,综上,a的取值范围[0,2](12分) 请考生在第22、23题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,作答时请用2B铅笔在答题卡将所选题号后的方框途黑.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,曲线C的参数方程为(α为参数).(1)求曲线C的普通方程;(2)在以O为极点,x正半轴为极轴的极坐标系中,直线l方程为,已知直线l与曲线C相交于A、B两点,求|AB|.【解答】解:(1)曲线C的参数方程为(α为参数).由已知,整理得:普通方程为,化简得x2+y2=2.(2)由ρsin(﹣θ)+=0,知,化为普通方程为x﹣y+=0圆心到直线l的距离h=,由垂径定理. [选修4-5:不等式选讲]23.已知函数f(x)=|x﹣a|,不等式f(x)≤3的解集为[﹣6,0].(1)求实数a的值;(2)若f(x)+f(x+5)≥2m对一切实数x恒成立,求实数m的取值范围.【解答】解:(1)由f(x)≤3,得|x﹣a|≤3,∴a﹣3≤x≤a+3,第17页共17页,又f(x)≤3的解集为[﹣6,0],解得:a=﹣3;(5分)(2)∵f(x)+f(x+5)=|x+3|+|x+8|≥5.又f(x)+f(x+5)≥2m对一切实数x恒成立,∴2m≤5,m≤(10分) 第17页共17页

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-05-19 09:38:11 页数:17
价格:¥5 大小:329.42 KB
文章作者:yuanfeng

推荐特供

MORE