首页

2019-2020学年广东省佛山市高考数学一模试卷(文科)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/23

2/23

剩余21页未读,查看更多内容需下载

广东省佛山市高考数学一模试卷(文科) 一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={﹣1,0,1},B={x|x﹣x2=0},则A∩B=(  )A.{0}B.{1}C.(0,1)D.{0,1}2.(5分)设复数z1=2+i,z2=1+ai,若,则实数a=(  )A.﹣2B.C.D.23.(5分)若变量x,y满足约束条件,则z=3x﹣2y的最小值为(  )A.﹣1B.0C.3D.94.(5分)袋中有5个球,其中红色球3个,标号分别为1,2,3;篮色球2个,标号分别为1,2;从袋中任取两个球,则这两个球颜色不同且标号之和不小于4的概率为(  )A.B.C.D.5.(5分)已知命题p:∀x>1,log2x+4logx2>4,则¬p为(  )A.¬p:∀x≤1,log2x+4logx2≤4B.¬p:∃x≤1,log2x+4logx2≤4C.¬p:∃x>1,log2x+4logx2=4D.¬p:∃x>1,log2x+4logx2≤46.(5分)把曲线上所有点向右平移个单位长度,再把得到的曲线上所有点的横坐标缩短为原来的,得到曲线C2,则C2(  )A.关于直线对称B.关于直线对称C.关于点对称D.关于点(π,0)对称7.(5分)当m=5,n=2时,执行如图所示的程序框图,输出的S值为(  )第23页共23页,A.20B.42C.60D.1808.(5分)已知tanθ=2,则=(  )A.B.C.D.9.(5分)已知函数f(x)=,则下列函数为奇函数的是(  )A.f(sinx)B.f(cosx)C.xf(sinx)D.x2f(cosx)10.(5分)如图,在正方形ABCD﹣A1B1C1D1中,E,F分别为B1C1,C1D1的中点,点P是底面A1B1C1D1内一点,且AP∥平面EFDB,则tan∠APA1的最大值是(  )A.B.1C.D.11.(5分)双曲线C:﹣=1(a>0,b>0)的左、右焦点分别为F1、F2,焦距为2c,以右顶点A为圆心的圆与直线l:x﹣y+第23页共23页,c=0相切于点N.设l与C的交点为P、Q,若点N恰为线段PQ的中点,则双曲线C的离心率为(  )A.B.C.2D.212.(5分)设函数f(x)=x3﹣3x2+2x,若x1,x2(x1<x2)是函数g(x)=f(x)﹣λx的两个极值点,现给出如下结论:①若﹣1<λ<0,则f(x1)<f(x2);②若0<λ<2,则f(x1)<f(x2);③若λ>2,则f(x1)<f(x2).其中正确结论的个数为(  )A.0B.1C.2D.3 二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)设=(1,2),=(﹣1,1),=+λ,若⊥,则实数λ的值等于  .14.(5分)设曲线y=xlnx在点(1,0)处的切线与曲线在点P处的切线垂直,则点P的横坐标为  .15.(5分)△ABC内角A,B,C的对边分别为a,b,c,若,则△ABC的面积S=  .16.(5分)平面四边形ABCD中,,沿直线AC将△ACD翻折成△ACD',当三棱锥D'﹣ABC的体积取得最大值时,该三棱锥的外接球的表面积是  . 三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知数列{an}是等比数列,数列{bn}满足.(1)求{an}的通项公式;第23页共23页,(2)求数列{bn}的前n项和Sn.18.(12分)某课外实习作业小组调查了1000名职场人士,就入职廊架公司的意愿做了统计,得到如下数据分布:人员结构选择意愿40岁以上(含40岁)男性40岁以上(含40岁)女性40岁以下男性40岁以下女性选择甲公司11012014080选择乙公司15090200110(1)请分布计算40岁以上(含40岁)与40岁以下全体中选择甲公司的概率(保留两位小数),根据计算结果,你能初步得出什么结论?(2)若分析选择意愿与年龄这两个分类变量,计算得到的K2的观测值为k1=5.5513,测得出“选择意愿与年龄有关系”的结论犯错误的概率的上限是多少?并用统计学知识分析,选择意愿与年龄变量和性别变量哪一个关联性更大?附:P(K2≥k)0.0500.0250.0100.005k3.8415.0246.6357.87919.(12分)如图,已知四棱锥P﹣ABCD中,AB∥CD,AB⊥AD,AB=AD=2,CD=4,PC=PD,∠PAB=∠PAD=60°.(1)证明:顶点P在底面ABCD的射影为边CD的中点;(2)点Q在PB上,且DQ⊥PB,求三棱锥Q﹣BCD的体积.20.(12分)已知椭圆的右顶点与抛物线的焦点重合,椭圆C1的离心率为,过椭圆C1第23页共23页,的右焦点F且垂直于x轴的直线截抛物线所得的弦长为4.(1)求椭圆C1和抛物线C2的方程;(2)过点A(﹣2,0)的直线l与C2交于M,N两点,点M关于x轴的对称点为M',证明:直线M'N恒过一定点.21.(12分)已知函数,(其中a∈R)(1)若a>0,讨论函数f(x)的单调性;(2)若a<0,求证:函数f(x)有唯一的零点. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.(10分)在直角坐标系xOy中,直线l的参数方程为为参数,0≤α<π),曲线C的参数方程为为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系.(1)求曲线C的极坐标方程;(2)设C与l交于M,N两点(异于原点),求|OM|+|ON|的最大值.23.已知函数f(x)=x|x﹣a|,a∈R.(1)若f(1)+f(﹣1)>1,求a的取值范围;(2)若a>0,对∀x,y∈(﹣∞,a],都有不等式恒成立,求a的取值范围. 第23页共23页,广东省佛山市高考数学一模试卷(文科)参考答案与试题解析 一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={﹣1,0,1},B={x|x﹣x2=0},则A∩B=(  )A.{0}B.{1}C.(0,1)D.{0,1}【解答】解:B={x|x﹣x2=0}={0,1},则A∩B={0,1},故选:D 2.(5分)设复数z1=2+i,z2=1+ai,若,则实数a=(  )A.﹣2B.C.D.2【解答】解:∵z1=2+i,z2=1+ai,∴,若,则1﹣2a=0,即a=.故选:C. 3.(5分)若变量x,y满足约束条件,则z=3x﹣2y的最小值为(  )A.﹣1B.0C.3D.9【解答】解:画出变量x,y满足约束条件可行域如图阴影区域:目标函数z=3x﹣2y可看做y=x﹣z,即斜率为,第23页共23页,截距为﹣z的动直线,数形结合可知,当动直线过点A时,z最小由得A(﹣1,﹣1)∴目标函数z=3x﹣2y的最小值为z=﹣3×0+2×1=﹣1.故选:A. 4.(5分)袋中有5个球,其中红色球3个,标号分别为1,2,3;篮色球2个,标号分别为1,2;从袋中任取两个球,则这两个球颜色不同且标号之和不小于4的概率为(  )A.B.C.D.【解答】解:袋中有5个球,其中红色球3个,标号分别为1,2,3;篮色球2个,标号分别为1,2;从袋中任取两个球,基本事件有10个,分别为:(红1,红2),(红1,红3),(红1,篮1),(红1,篮2),(红2,红3),(红2,篮1),(红2,篮2),(红3,篮1),(红3,篮2),(篮1,篮2),这两个球颜色不同且标号之和不小于4包含的基本事件有3个,分别为:(红2,篮2),(红3,篮1),(红3,篮2),故这两个球颜色不同且标号之和不小于4的概率为p=.故选:A. 第23页共23页,5.(5分)已知命题p:∀x>1,log2x+4logx2>4,则¬p为(  )A.¬p:∀x≤1,log2x+4logx2≤4B.¬p:∃x≤1,log2x+4logx2≤4C.¬p:∃x>1,log2x+4logx2=4D.¬p:∃x>1,log2x+4logx2≤4【解答】解:命题是全称命题,则命题的否定是特称命题,即:¬p:∃x>1,log2x+4logx2≤4,故选:D. 6.(5分)把曲线上所有点向右平移个单位长度,再把得到的曲线上所有点的横坐标缩短为原来的,得到曲线C2,则C2(  )A.关于直线对称B.关于直线对称C.关于点对称D.关于点(π,0)对称【解答】解:把曲线上所有点向右平移个单位长度,可得y=2sin(x﹣﹣)=2sin(x﹣)的图象;再把得到的曲线上所有点的横坐标缩短为原来的,得到曲线C2:y=2sin(2x﹣)的图象,对于曲线C2:y=2sin(2x﹣):令x=,y=1,不是最值,故它的图象不关于直线对称,故A错误;令x=,y=2,为最值,故它的图象关于直线对称,故B正确;令x=,y=﹣1,故它的图象不关于点对称,故C错误;令x=π,y=﹣,故它的图象不关于点(π,0)对称,故D错误,故选:B. 7.(5分)当m=5,n=2时,执行如图所示的程序框图,输出的S值为(  )第23页共23页,A.20B.42C.60D.180【解答】解:由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S=5×4×3的值,S=5×4×3=60.故选:C. 8.(5分)已知tanθ=2,则=(  )A.B.C.D.【解答】解:tanθ=2,则====第23页共23页,==.故选:D. 9.(5分)已知函数f(x)=,则下列函数为奇函数的是(  )A.f(sinx)B.f(cosx)C.xf(sinx)D.x2f(cosx)【解答】解:根据题意,对于函数f(x)=,当x>0时,f(x)=x2+2x,则有﹣x<0,f(﹣x)=(﹣x)2﹣2(﹣x)=x2+2x,则函数f(x)为偶函数,分析选项:对于A,设g(x)=f(sinx),有g(﹣x)=f[sin(﹣x)]=f(﹣sinx)=f(sinx)=g(x),为偶函数,不符合题意;对于B,设g(x)=f(cosx),有g(﹣x)=f[cos(﹣x)]=f(cosx)=g(x),为偶函数,不符合题意;对于C,设g(x)=xf(sinx),有g(﹣x)=(﹣x)f[sin(﹣x)]=﹣xf(﹣sinx)=﹣xf(sinx)=﹣g(x),为奇函数,符合题意;对于D,设g(x)=x2f(sinx),有g(﹣x)=(﹣x)2f[sin(﹣x)]=x2f(﹣sinx)=x2f(sinx)=g(x),为偶函数,不符合题意;故选:C. 10.(5分)如图,在正方形ABCD﹣A1B1C1D1中,E,F分别为B1C1,C1D1的中点,点P是底面A1B1C1D1内一点,且AP∥平面EFDB,则tan∠APA1的最大值是(  )第23页共23页,A.B.1C.D.【解答】解:连结AC、BD,交于点O,连结A1C1,交EF于M,连结OM,设正方形ABCD﹣A1B1C1D1中棱长为1,∵在正方形ABCD﹣A1B1C1D1中,E,F分别为B1C1,C1D1的中点,点P是底面A1B1C1D1内一点,且AP∥平面EFDB,∴AOPM,∴A1P=C1M=,∴tan∠APA1===2.∴tan∠APA1的最大值是2.故选:D. 11.(5分)双曲线C:﹣=1(a>0,b>0)的左、右焦点分别为F1、F2,焦距为2c,以右顶点A为圆心的圆与直线l:x﹣y+c=0相切于点N.设l与C的交点为P、Q,若点N恰为线段PQ的中点,则双曲线C的离心率为(  )A.B.C.2D.2【解答】解:如图,∵以右顶点A为圆心的圆与直线l:x﹣y+c=0相切于点N,∴,第23页共23页,∵直线l:x﹣y+c=0的倾斜角为300,,∠NAF1=600,∴由,得(y2﹣2.yN=整理得:c3﹣3c2a+4a3=0⇒e3﹣3e2+4=0,(e3+1)﹣3(e2﹣1)=0⇒(e+1)(e2﹣4e+4)=0.∴e=2,故选:C 12.(5分)设函数f(x)=x3﹣3x2+2x,若x1,x2(x1<x2)是函数g(x)=f(x)﹣λx的两个极值点,现给出如下结论:①若﹣1<λ<0,则f(x1)<f(x2);②若0<λ<2,则f(x1)<f(x2);③若λ>2,则f(x1)<f(x2).第23页共23页,其中正确结论的个数为(  )A.0B.1C.2D.3【解答】解:函数g(x)=f(x)﹣λx,∴g′(x)=f′(x)﹣λ,令g′(x)=0,∴f′(x)﹣λ=0,即f′(x)=λ有两解x1,x2,(x1<x2)∵f(x)=x3﹣3x2+2x,∴f′(x)=3x2﹣6x+2,分别画出y=f′(x)与y=λ的图象如图所示:①当﹣1<λ<0时,则f(x1)>f(x2);②若0<λ<2,则f(x1)>f(x2);③若λ>2,则f(x1)<f(x2).故选:B. 二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)设=(1,2),=(﹣1,1),=+λ,若⊥,则实数λ的值等于 ﹣5 .第23页共23页,【解答】解:=+λ=(1,2)+λ(﹣1,1)=(1﹣λ,2+λ),∵⊥,∴=1﹣λ+2(2+λ)=0,则实数λ=﹣5故答案为:﹣5. 14.(5分)设曲线y=xlnx在点(1,0)处的切线与曲线在点P处的切线垂直,则点P的横坐标为 ±2 .【解答】解:由y=xlnx,得y′=1+lnx,∴y′|x=1=1,由y=,得y′=﹣,设P(x0,y0),则y′=|=﹣,由题意可得:﹣=﹣1,∴x0=±2.则P点的横坐标为±2.故答案为:±2. 15.(5分)△ABC内角A,B,C的对边分别为a,b,c,若,则△ABC的面积S=  .【解答】解:△ABC中,∵cosA=,可得:sinA==,∴由正弦定理可得:b===7,∴由余弦定理b2=a2+c2﹣2accosB,可得:49=25+c2﹣5c,解得:c=8或﹣3(舍去),第23页共23页,∴S△ABC=acsinB==.故答案为:. 16.(5分)平面四边形ABCD中,,沿直线AC将△ACD翻折成△ACD',当三棱锥D'﹣ABC的体积取得最大值时,该三棱锥的外接球的表面积是 24π .【解答】解:在三角形ABC中,由余弦定理可得cosB==﹣,则sinB==,=2,则AC边上的高为h=1,平面四边形ABCD中,,四边形是筝形,AC⊥BD,当三棱锥D'﹣ABC的体积取得最大值时,△ACD翻折成△ACD'两个三角形所在平面垂直,建立如图所示的空间直角坐标系,如图:则A(0,0,0),B(0,1,1),C(0,4,0),D(1,1,0),设外接球的球心为(x,y,z),则|OA|=|OB|=|OC|=|OD|,可得:,解得x=﹣1;y=2,z=﹣1,外接球的半径为:r=|OA|==,外接球的表面积为:4πr2=24π;故答案为:24π.第23页共23页, 三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知数列{an}是等比数列,数列{bn}满足.(1)求{an}的通项公式;(2)求数列{bn}的前n项和Sn.【解答】解:(1)因为an+1+bn=n,则a2+b1=1,得a2=4,a3+b2=2,得a3=8,因为数列{an}是等比数列,所以,所以.(2)由(1)可得,所以=. 18.(12分)某课外实习作业小组调查了1000名职场人士,就入职廊架公司的意愿做了统计,得到如下数据分布:人员结构40岁以下男40岁以下女第23页共23页,选择意愿40岁以上(含40岁)男性40岁以上(含40岁)女性性性选择甲公司11012014080选择乙公司15090200110(1)请分布计算40岁以上(含40岁)与40岁以下全体中选择甲公司的概率(保留两位小数),根据计算结果,你能初步得出什么结论?(2)若分析选择意愿与年龄这两个分类变量,计算得到的K2的观测值为k1=5.5513,测得出“选择意愿与年龄有关系”的结论犯错误的概率的上限是多少?并用统计学知识分析,选择意愿与年龄变量和性别变量哪一个关联性更大?附:P(K2≥k)0.0500.0250.0100.005k3.8415.0246.6357.879【解答】解:(1)设40岁以上(含40岁)与40岁以下群体中选择甲公司的概率分别为P1,P2,由数据知P1==≈0.49,P2==≈0.42,因为P1>P2,所以年龄40岁以上(含40岁)的群体选择甲公式的可能性要大;(2)因为k1=0.5513>5.024,根据表中对应值,得出“选择意愿与年龄有关系”的结论犯错的概率的上限是0.025,由数据分布可得选择意愿与性别两个分类变量的2×2列联表:选择甲公司选择乙公司合计男250350600女200200400合计4505501000计算K2==≈6.734,且K2=6.734>6.635,根据临界值表得出结论“选择意愿与性别有关”的犯错误的概率上限为0.01,第23页共23页,由0.01<0.025,所以与年龄相比,选择意愿与性别关联性更大. 19.(12分)如图,已知四棱锥P﹣ABCD中,AB∥CD,AB⊥AD,AB=AD=2,CD=4,PC=PD,∠PAB=∠PAD=60°.(1)证明:顶点P在底面ABCD的射影为边CD的中点;(2)点Q在PB上,且DQ⊥PB,求三棱锥Q﹣BCD的体积.【解答】(1)证明:取CD的中点为O,连接OP,OB,则OD=BA=2,因为AB∥CD,AB⊥AD,AB=AD=2,所以四边形ABOD是正方形,OB⊥CD,因为PC=PD,O为CD中点,所以PO⊥CD,由OP∩OB=O,所以CD⊥平面POB,PB⊂平面POB,所以CD⊥PB,因为AB∥CD,所以AB⊥PB,则在Rt△ABP中,∠PAB=60°,AB=2,所以,在Rt△DOP中,,所以OB2+OP2=4+8=12=PB2,即OP⊥OB,又CD∩OB=O所以PO⊥底面ABCD,即顶点P在底面ABCD的射影为边CD的中点.(2)解:由题设与(1)可得,因为DQ⊥PB,所以,解得,所以,又,设三棱锥Q﹣BCD的高为h,则,又,第23页共23页,所以三棱锥Q﹣BCD的体积. 20.(12分)已知椭圆的右顶点与抛物线的焦点重合,椭圆C1的离心率为,过椭圆C1的右焦点F且垂直于x轴的直线截抛物线所得的弦长为4.(1)求椭圆C1和抛物线C2的方程;(2)过点A(﹣2,0)的直线l与C2交于M,N两点,点M关于x轴的对称点为M',证明:直线M'N恒过一定点.【解答】解:(1)设椭圆C1的半焦距为c,依题意,可得,则,代入x=c,得y2=4ax,即,所以,则有,所以椭圆C1的方程为,抛物线C2的方程为y2=8x.(2)依题意,可知直线l的斜率不为0,可设l:x=my﹣2,联立,得y2﹣8my+16=0,设M(x1,y1),N(x1,y1),则M'(x1,﹣y1),△>0,得m<﹣1或m>1,,第23页共23页,所以直线M'N的斜率,可得直线M'N的方程为,即=,所以当m<﹣1或m>1时,直线M'N恒过定点(2,0). 21.(12分)已知函数,(其中a∈R)(1)若a>0,讨论函数f(x)的单调性;(2)若a<0,求证:函数f(x)有唯一的零点.【解答】解:(1)f(x)的定义域为(0,+∞),,令f'(x)=0,即,①当x1=x2,即时,f'(x)≥0,f(x)是(0,+∞)上的增函数;②当x1<x2,即时,当时,f'(x)>0,f(x)单调递增,当时,f'(x)<0,f(x)单调递减;当时,f'(x)>0,f(x)单调递增;③当x2<x1,即时,当时,f'(x)>0,f(x)单调递增;当时,f'(x)<0,f(x)单调递减;第23页共23页,当时,f'(x)>0,f(x)单调递增;综上所述,当时,f(x)在单调递增,在单调递减;当时,f(x)在(0,+∞)单调递增;当时,f(x)在单调递增,在在单调递减.(2)若a<0,令f'(x)=0,即(2x﹣a)(1+lnx)=0,得,当时,f'(x)<0,f(x)单调递减,当时,f'(x)>0,f(x)单调递增,故当时,f(x)取得极小值,以下证明:在区间上,f(x)<0,令,则,,,因为a<0,t>1,不等显然成立,故在区间上,f(x)<0,又,即,故当a<0时,函数f(x)有唯一的零点. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.(10分)在直角坐标系xOy中,直线l的参数方程为为参数,0≤α<π),曲线C的参数方程为为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系.(1)求曲线C的极坐标方程;(2)设C与l交于M,N两点(异于原点),求|OM|+|ON|的最大值.【解答】解:(1)∵曲线C的参数方程为为参数),∴消去参数β,得曲线C的普通方程为x2+(y﹣2)2=4,第23页共23页,化简得x2+y2=4y,则ρ2=4ρsinθ,所以曲线C的极坐标方程为ρ2=4ρsinθ.(2)∵直线l的参数方程为为参数,0≤α<π),∴由直线l的参数方程可知,直线l必过点(0,2),也就是圆C的圆心,则,不妨设,其中,则,所以当,|OM|+|ON|取得最大值为. 23.已知函数f(x)=x|x﹣a|,a∈R.(1)若f(1)+f(﹣1)>1,求a的取值范围;(2)若a>0,对∀x,y∈(﹣∞,a],都有不等式恒成立,求a的取值范围.【解答】解:(1)f(1)+f(﹣1)=|1﹣a|﹣|1+a|>1,若a≤﹣1,则1﹣a+1+a>1,得2>1,即a≤﹣1时恒成立,若﹣1<a<1,则1﹣a﹣(1+a)>1,得,即,若a≥1,则﹣(1﹣a)﹣(1+a)>1,得﹣2>1,即不等式无解,综上所述,a的取值范围是.(2)由题意知,要使得不等式恒成立,只需,当x∈(﹣∞,a]时,,因为,所以当时,,第23页共23页,即,解得﹣1≤a≤5,结合a>0,所以a的取值范围是(0,5]. 第23页共23页

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-05-19 09:38:26 页数:23
价格:¥5 大小:502.03 KB
文章作者:yuanfeng

推荐特供

MORE