首页

2019-2020学年广东省佛山市顺德区高考数学一模试卷(理科)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/22

2/22

剩余20页未读,查看更多内容需下载

广东省佛山市顺德区高考数学一模试卷(理科) 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)已知集合A={x|﹣1≤x≤3},B={x∈Z|x2<5},则A∩B=(  )A.{0,1}B.{﹣1,0,1,2}C.{﹣1,0,1}D.{﹣2,﹣1,0,1,2}2.(5分)已知复数z=1﹣i,则下列命题中正确的个数为:(  )①|z|=;②=1+i;③z的虚部为﹣i.A.0B.1C.2D.33.(5分)向量=(1,x+1),=(1﹣x,2),⊥,则(+)(﹣)=(  )A.﹣15B.15C.﹣20D.204.(5分)△ABC中,tanA=,AC=2,BC=4,则AB=(  )A.2﹣B.﹣C.+D.2+5.(5分)将一根长为6m的绳子剪为二段,则其中一段大于另一段2倍的概率为(  )A.B.C.D.6.(5分)执行如图所示的程序框图,输出的S值是(  )第22页共22页,A.B.﹣1C.0D.17.(5分)《九章算术》卷五商功中有如下问题:今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈,问积几何.刍甍:底面为矩形的屋脊状的几何体(网格纸中粗线部分为其三视图,设网格纸上每个小正方形的边长为1丈),那么该刍甍的体积为(  )A.4立方丈B.5立方丈C.6立方丈D.12立方丈8.(5分)已知a=log52,b=log73,c=log3,则a,b,c的大小关系(  )A.a<b<cB.a<c<bC.b<a<cD.c<b<a9.(5分)已知P(x,y)为平面区域内的任意一点,当该区域的面积为3时,z=2x﹣y的最大值是(  )A.6B.3C.2D.1第22页共22页,10.(5分)已知三棱锥S﹣ABC的各顶点都在一个半径为r的球面上,且SA=SB=SC=1,AB=BC=AC=,则球的表面积为(  )A.4πB.3πC.8πD.12π11.(5分)若圆(x﹣)2+(y﹣1)2=9与双曲线﹣=1(a>0,b>0)经过二、四象限的渐近线,交于A,B两点且|AB|=2,则此双曲线的离心率为(  )A.B.C.2D.12.(5分)对于实数a、b,定义运算“⊗”:a⊗b=,设f(x)=(2x﹣3)⊗(x﹣3),且关于x的方程f(x)=k(k∈R)恰有三个互不相同的实根x1、x2、x3,则x1•x2•x3取值范围为(  )A.(0,3)B.(﹣1,0)C.(﹣∞,0)D.(﹣3,0) 二、填空题:本大题共4小题,每小题5分,共20分).13.(5分)若sin(α+β)cosα﹣cos(α+β)sinα=,则cos2β=  .14.(5分)4名同学去参加3个不同的社团组织,每名同学只能参加其中一个社团组织,且甲乙两位同学不参加同一个社会团体,则共有  种结果.15.(5分)已知f(x)=f(4﹣x),当x≤2时,f(x)=ex,f′(3)+f(3)=  .16.(5分)设抛物线y2=4x的焦点为F,准线为l,过焦点的直线交抛物线于A,B两点,分别过A,B作l的垂线,垂足为C,D,若|AF|=2|BF|,则三角形CDF的面积为  . 三、解答题:本大题共5小题,共70分.解答写出文字说明、证明过程或演算过程.17.(12分)已知数列{an}的前n项和为Sn,an>0且满足an=2Sn﹣﹣(n∈第22页共22页,N*).(Ⅰ)求数列{an}的通项公式;(Ⅱ)求数列{}的前n项和Tn.18.(12分)如图,在三棱锥D﹣ABC中,DA=DB=DC,E为AC上的一点,DE⊥平面ABC,F为AB的中点.(Ⅰ)求证:平面ABD⊥平面DEF;(Ⅱ)若AD⊥DC,AC=4,∠BAC=45°,求二面角A﹣BD﹣C的余弦值.19.(12分)某市市民用水拟实行阶梯水价,每人用水量不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费,从该市随机调查了100位市民,获得了他们某月的用水量数据,整理得到如下频率分布直方图,并且前四组频数成等差数列,(Ⅰ)求a,b,c的值及居民用水量介于2﹣2.5的频数;(Ⅱ)根据此次调查,为使80%以上居民月用水价格为4元/立方米,应定为多少立方米?(精确到小数掉后2位)第22页共22页,(Ⅲ)若将频率视为概率,现从该市随机调查3名居民的用水量,将月用水量不超过2.5立方米的人数记为X,求其分布列及其均值.20.(12分)已知椭圆C的中心在原点,焦点在x轴上,离心率等于,它的一个顶点恰好是抛物线x2=﹣4y的焦点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若圆O:x2+y2=r2与椭圆C交于A,B,C,D四点,当半径r为多少时,四边形ABCD的面积最大?并求出最大面积.21.(12分)设函数f(x)=xlnx﹣ax+1,g(x)=﹣2x3+3x2﹣x+.(Ⅰ)求函数f(x)在[,e]上有两个零点,求a的取值范围;(Ⅱ)求证:f(x)+ax>g(x). [选修4-4:坐标系与参数方程选讲]22.(10分)在直角坐标系xOy中,曲线C1的参数方程为(α为参数),曲线C1经过坐标变换后得到的轨迹为曲线C2.(Ⅰ)求C2的极坐标方程;(Ⅱ)在以O为极点,x轴的正半轴为极轴的极坐标中,射线θ=与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|. [选修4-5:不等式选讲]23.已知函数f(x)=|x﹣3|﹣|x+5|.(Ⅰ)求不等式f(x)≤2的解集;(Ⅱ)设函数f(x)的最大值为M,若不等式x2+2x+m≥M恒成立,求m的取值范围. 第22页共22页,广东省佛山市顺德区高考数学一模试卷(理科)参考答案与试题解析 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)已知集合A={x|﹣1≤x≤3},B={x∈Z|x2<5},则A∩B=(  )A.{0,1}B.{﹣1,0,1,2}C.{﹣1,0,1}D.{﹣2,﹣1,0,1,2}【解答】解:∵A={x|﹣1≤x≤3},B={x∈Z|x2<5}={x∈Z|﹣<x<}={﹣2,﹣1,0,1,2},∴A∩B={﹣1,0,1,2},故选:B. 2.(5分)已知复数z=1﹣i,则下列命题中正确的个数为:(  )①|z|=;②=1+i;③z的虚部为﹣i.A.0B.1C.2D.3【解答】解:∵z=1﹣i,∴|z|=,故①正确;,故②正确;z的虚部为﹣1,故③错误.∴正确命题的个数为2个.故选:C. 3.(5分)向量=(1,x+1),=(1﹣x,2),⊥,则(+)(﹣)=(  )A.﹣15B.15C.﹣20D.20第22页共22页,【解答】解:向量=(1,x+1),=(1﹣x,2),若⊥,则•=(1﹣x)+2(x+1)=x+3=0,解可得x=﹣3,则=(1,﹣2),=(4,2),(+)=(5,0),(﹣)=(﹣3,﹣4); 则(+)(﹣)=﹣15;故选:A. 4.(5分)△ABC中,tanA=,AC=2,BC=4,则AB=(  )A.2﹣B.﹣C.+D.2+【解答】解:已知tanA=,由于:0<A<π,解得:A=,利用余弦定理:BC2=AC2+AB2﹣2AC•AB•cosA,解得:AB=(负值舍去).故选:C. 5.(5分)将一根长为6m的绳子剪为二段,则其中一段大于另一段2倍的概率为(  )A.B.C.D.【解答】解:绳子的长度为6m,折成两段后,设其中一段长度为x,则另一段长度6﹣x,记“其中一段长度大于另一段长度2倍”为事件A,则A={x|}={x|0<x<2或4<x≤6},第22页共22页,∴P(A)=,故选:B. 6.(5分)执行如图所示的程序框图,输出的S值是(  )A.B.﹣1C.0D.1【解答】解:本题为直到型循环结构的程序框图,由框图的流程知:算法的功能是求S=cos+cosπ+…+cos的值,∵y=cos的周期为4,2017=504×4+1∴输出S=504×(cos+cosπ+cos+cos2π)+cos=0故选:C 7.(5分)《九章算术》卷五商功中有如下问题:今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈,问积几何.刍甍:底面为矩形的屋脊状的几何体(网格纸中粗线部分为其三视图,设网格纸上每个小正方形的边长为1丈),那么该刍甍的体积为(  )第22页共22页,A.4立方丈B.5立方丈C.6立方丈D.12立方丈【解答】解:三棱柱的底面是边长为3,高为1的等腰三角形.三棱柱的高为2.∴三棱柱的体积V=.两个相同的四棱锥合拼,可得底面边长为2和3的矩形的四棱锥,其高为1.∴体积V==2.该刍甍的体积为:3+2=5.故选:B. 8.(5分)已知a=log52,b=log73,c=log3,则a,b,c的大小关系(  )A.a<b<cB.a<c<bC.b<a<cD.c<b<a【解答】解:∵c=log3=log53>log73,b=log73>=,a=log52<=,则a,b,c的大小关系为:a<b<c.故选:A. 9.(5分)已知P(x,y)为平面区域第22页共22页,内的任意一点,当该区域的面积为3时,z=2x﹣y的最大值是(  )A.6B.3C.2D.1【解答】解:由作出可行域如图,由图可得A(a,a),D(a,a),B(a+1,a+1),C(a+1,﹣a﹣1)由该区域的面积为3时,×1=3,得a=1.∴A(1,1),C(2,﹣2)化目标函数z=2x﹣y为y=2x﹣z,∴当y=2x﹣z过C点时,z最大,等于2×2﹣(﹣2)=6.故选:A. 10.(5分)已知三棱锥S﹣ABC的各顶点都在一个半径为r的球面上,且SA=SB=SC=1,AB=BC=AC=,则球的表面积为(  )A.4πB.3πC.8πD.12π【解答】解:三棱锥S﹣ABC中,SA=SB=SC=1,AB=BC=AC=,∴共顶点S的三条棱两两相互垂直,且其长均为1,三棱锥的四个顶点同在一个球面上,三棱锥是正方体的一个角,扩展为正方体,三棱锥的外接球与正方体的外接球相同,正方体的对角线就是球的直径,所以球的直径为:,半径为,第22页共22页,外接球的表面积为:4π×()2=3π.故选:B. 11.(5分)若圆(x﹣)2+(y﹣1)2=9与双曲线﹣=1(a>0,b>0)经过二、四象限的渐近线,交于A,B两点且|AB|=2,则此双曲线的离心率为(  )A.B.C.2D.【解答】解:依题意可知双曲线的经过二、四象限的渐近线方程为bx+ay=0,∵|AB|=2,圆的圆心为(,1),半径为3,∴圆心到渐近线的距离为=,即=,解得b=a,∴c==a,∴双曲线的离心率为e==.故选:A. 12.(5分)对于实数a、b,定义运算“⊗”:a⊗b=,设f(x)=(2x﹣3)⊗(x﹣3),且关于x的方程f(x)=k(k∈R)恰有三个互不相同的实根x1、x2、x3,则x1•x2•x3取值范围为(  )A.(0,3)B.(﹣1,0)C.(﹣∞,0)D.(﹣3,0)【解答】解:∵a⊗b=,∴f(x)=(2x﹣3)⊗(x﹣3)=,第22页共22页,其图象如下图所示:由图可得:x1=﹣k,x2•x3=k,故x1•x2•x3=﹣k2,k∈(0,3),∴x1•x2•x3∈(﹣3,0),故选:D. 二、填空题:本大题共4小题,每小题5分,共20分).13.(5分)若sin(α+β)cosα﹣cos(α+β)sinα=,则cos2β= ﹣ .【解答】解:∵sin(α+β)cosα﹣cos(α+β)sinα=sin[(α+β)﹣α]=sinβ=,则cos2β=1﹣2sin2β=1﹣2•=﹣,故答案为:﹣. 14.(5分)4名同学去参加3个不同的社团组织,每名同学只能参加其中一个社团组织,且甲乙两位同学不参加同一个社会团体,则共有 54 种结果.【解答】解:根据题意,先计算4名同学去参加3个不同的社团组织的情况数目,4个同学中每人可以在3个不同的社团组织任选1个,即每人有3种不同的选法,则4人有3×3×3×3=81种情况,再计算甲乙参加同一个社团组织的情况数目,第22页共22页,若甲乙参加同一个社团组织,甲乙两人有3种情况,剩下的2人每人有3种不同的选法,则剩下的2人有3×3=9种情况,则甲乙参加同一个社团组织的情况有3×9=27种;则甲乙两位同学不参加同一个社团组织的情况有81﹣27=54种;故答案为:54. 15.(5分)已知f(x)=f(4﹣x),当x≤2时,f(x)=ex,f′(3)+f(3)= 0 .【解答】解:由f(x)=f(4﹣x)可得,函数f(x)的图象关于直线x=2对称,当x≤2时,f(x)=ex,f′(x)=ex,∴f(3)=f(1)=e,f′(3)=﹣f′(1)=﹣e,故f′(3)+f(3)=0,故答案为:0. 16.(5分)设抛物线y2=4x的焦点为F,准线为l,过焦点的直线交抛物线于A,B两点,分别过A,B作l的垂线,垂足为C,D,若|AF|=2|BF|,则三角形CDF的面积为 3 .【解答】解:如图,抛物线y2=4x的焦点F(1,0),准线l为x=﹣1,设l所在直线方程为y=k(x﹣1),设A(x1,y1),B(x2,y2)联立,得k2x2﹣(2k2+4)x+k2=0,∴x1x2=1,①∵|AF|=2|BF|,∴x1+1=2(x2+1),②由①②解得x2=,x1=2,或x1=﹣1,x2=﹣1(舍去)第22页共22页,∴y1=2,y2=﹣,∴|CD|=y1﹣y2=3,∵|FG|=1+1=2,∴S△CDF=×|CD|×|FG|=×3×2=3,故答案为:3 三、解答题:本大题共5小题,共70分.解答写出文字说明、证明过程或演算过程.17.(12分)已知数列{an}的前n项和为Sn,an>0且满足an=2Sn﹣﹣(n∈N*).(Ⅰ)求数列{an}的通项公式;(Ⅱ)求数列{}的前n项和Tn.【解答】解:(Ⅰ)当n=1时,,解得a1=1;由an=2Sn﹣﹣,整理得,①∴,②②﹣①得:,第22页共22页,∴(an+1+an)(an+1﹣an﹣2)=0,∵an>0,∴an+1﹣an﹣2=0,即an﹣1﹣an=2.∴数列{an}是以1为首项,以2为公差的等差数列,则an=1+2(n﹣1)=2n﹣1;(Ⅱ)=,③,④③﹣④得:==.∴. 18.(12分)如图,在三棱锥D﹣ABC中,DA=DB=DC,E为AC上的一点,DE⊥平面ABC,F为AB的中点.(Ⅰ)求证:平面ABD⊥平面DEF;(Ⅱ)若AD⊥DC,AC=4,∠BAC=45°,求二面角A﹣BD﹣C的余弦值.【解答】证明:(Ⅰ)∵DE⊥平面ABC,∴AB⊥DE,又∵F为AB的中点,DA=DB,∴AB⊥DF,DF∩DE=E,且DF、DE⊂平面DEF,第22页共22页,又∵AB⊂平面ABD,∴平面ABD⊥平面DEF;解:(Ⅱ)∵DE⊥平面ABC,∴AC⊥DE,又∵DA=DC,∴E为AC中点,∵F是AB中点,∴EF∥BC,由(Ⅰ)知AB⊥EF,∴AB⊥BC,又∵∠BAC=45°,∴△ABC为等腰直角三角形,AC=4,∴AB=BC=DA=DB=DC=2,取BD中点G,连结AG、CG,则AG⊥DB,CG⊥DB,∴∠AGC为二面角A﹣BD﹣C的平面角,在△AGC中,cos∠AGC==﹣,∴二面角A﹣BD﹣C的余弦值为﹣. 19.(12分)某市市民用水拟实行阶梯水价,每人用水量不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费,从该市随机调查了100位市民,获得了他们某月的用水量数据,整理得到如下频率分布直方图,并且前四组频数成等差数列,第22页共22页,(Ⅰ)求a,b,c的值及居民用水量介于2﹣2.5的频数;(Ⅱ)根据此次调查,为使80%以上居民月用水价格为4元/立方米,应定为多少立方米?(精确到小数掉后2位)(Ⅲ)若将频率视为概率,现从该市随机调查3名居民的用水量,将月用水量不超过2.5立方米的人数记为X,求其分布列及其均值.【解答】解:(Ⅰ)∵前四组频数成等差数列,∴所对应的频率也成等差数列,设a=0.2+d,b=0.2+2d,c=0.2+3d,∴0.5(a+0.2+d+0.2+2d+0.2+3d+0.2+d+0.1+0.1+0.1)=1,解得d=0.1,a=0.3,b=0.4,c=0.5.居民月用水量介于2~2.5的频率为0.25.居民月用水量介于2~2.5的频数为0.25×100=25人.(Ⅱ)由图可知,居民月用水量小于2.5的频率为0.7<0.8,∴为使80%以上居民月用水价格为4元/立方米,应定为ω=2.5+≈2.83立方米.(Ⅲ)将频率视为概率,设A代表居民月用水量,由图知:P(A≤2.5)=0.7,由题意X~B(3,0.7),P(X=0)==0.027,P(X=1)==0.189,P(X=2)==0.441,第22页共22页,P(X=3)==0.343.∴X的分布列为:X0123P0.0270.1890.4410.343∵X~B(3,0.7),∴E(X)=np=2.1. 20.(12分)已知椭圆C的中心在原点,焦点在x轴上,离心率等于,它的一个顶点恰好是抛物线x2=﹣4y的焦点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若圆O:x2+y2=r2与椭圆C交于A,B,C,D四点,当半径r为多少时,四边形ABCD的面积最大?并求出最大面积.【解答】解:(Ⅰ)∵椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物线x2=﹣4y的焦点,离心率等于,∴设椭圆方程为,根据题意得:,解得:所以椭圆C的方程为;(Ⅱ)设A(x0,y0),则矩形ABCD的面积S=4|x0y0|由,得,∴==﹣(﹣2)2+1,∴时,()max=1,第22页共22页,∴Smax=4×1=4,此时r2==.即r=. 21.(12分)设函数f(x)=xlnx﹣ax+1,g(x)=﹣2x3+3x2﹣x+.(Ⅰ)求函数f(x)在[,e]上有两个零点,求a的取值范围;(Ⅱ)求证:f(x)+ax>g(x).【解答】解:(Ⅰ)由f(x)=xlnx﹣ax+1=0,得:a=lnx+,问题转化为a=lnx+在[,e]上有2个不同的解,令h(x)=lnx+,x∈[,e],则h′(x)=,令h′(x)>0,解得:x>1,令h′(x)<0,解得:0<x<1,故h(x)在(0,1)递减,在(1,+∞)递增,而h(1)=1,h()=e﹣1,h(e)=1+<e﹣1,故a的范围是(1,1+);(Ⅱ)要证f(x)+ax≥g(x),只要证明xlnx+1≥g(x),先证xlnx+1≥x,构造函数F(x)=xlnx+1﹣x,∵F′(x)=1+lnx﹣1=lnx,x=1时,F′(x)=0,当0<x<1时,F′(x)<0,x>1时,F′(x)>0,故F(x)在[0,1]递减,在[1,+∞)递增,故F(x)≥F(1)=0,即证xlnx+1≥x,等号成立当且仅当x=1,再证明x∈[,+∞)时,g(x)≤x,构造函数G(x)=x﹣g(x)=2,∵G′(x)=6≥0,∴G(x)在[,+∞)递增,第22页共22页,∴G(x)≥G()=0,即证明g(x)≤x,等号成立当且仅当x=,故x∈(0,)时,构造函数φ(x)=f(x)+ax=xlnx+1,∵φ′(x)=1+lnx,∴x=时,φ′(x)=0,当0<x<时,φ′(x)<0,当<x<时,φ′(x)>0,即φ(x)在(0,)递减,在(,)递增,∴x∈(0,)时,φ(x)≥φ()=1﹣,∵g′(x)=﹣6+1,x∈(0,)时,﹣<g′(x)<1,又g′(0)=﹣<0,g′()=1>0,存在x0∈(0,),使得g′(x0)=0,且g(x)在(0,x0)递减,在(x0,)递增,故x∈(0,)时,g(x)<max{g(0),g()}=,∴g(x)<<1﹣≤φ(x),综上,对任意x>0,f(x)+ax>g(x). [选修4-4:坐标系与参数方程选讲]22.(10分)在直角坐标系xOy中,曲线C1的参数方程为(α为参数),曲线C1经过坐标变换后得到的轨迹为曲线C2.(Ⅰ)求C2的极坐标方程;(Ⅱ)在以O为极点,x轴的正半轴为极轴的极坐标中,射线θ=与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.【解答】解:(Ⅰ)曲线C1的参数方程为(α为参数),转化为直角坐标方程为:x2+y2=1,曲线C1经过坐标变换后得到的轨迹为曲线C2.第22页共22页,即:,故C2的直角坐标方程为:.转化为极坐标方程为:.(Ⅱ)曲线C1的参数方程为(α为参数),转化为极坐标方程为ρ1=1,由题意得到:A(1,),将B(ρ,)代入坐标方程:.得到,则:|AB|=. [选修4-5:不等式选讲]23.已知函数f(x)=|x﹣3|﹣|x+5|.(Ⅰ)求不等式f(x)≤2的解集;(Ⅱ)设函数f(x)的最大值为M,若不等式x2+2x+m≥M恒成立,求m的取值范围.【解答】解:(Ⅰ)x≥3时,f(x)=﹣8,此时f(x)≤2恒成立,﹣5<x<3时,f(x)=﹣2x﹣2,由f(x)≤2,解得:﹣2≤x<3,x≤﹣5时,f(x)=8,此时f(x)≤2,无解,综上,f(x)≤2的解集是{x|x≥﹣2};(Ⅱ)由(Ⅰ)得f(x)=,易知函数的最大值是8,若x2+2x+m≥8恒成立,得m≥﹣x2﹣2x+8恒成立,第22页共22页,即m≥﹣(x+1)2+9,故m≥9. 第22页共22页

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-05-19 09:38:26 页数:22
价格:¥5 大小:417.69 KB
文章作者:yuanfeng

推荐特供

MORE