中考数学一模试卷精选汇编几何综合
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
几何综合东城区27.已知△ABC中,AD是的平分线,且AD=AB,过点C作AD的垂线,交AD的延长线于点H.(1)如图1,若①直接写出和的度数;②若AB=2,求AC和AH的长;(2)如图2,用等式表示线段AH与AB+AC之间的数量关系,并证明.第21页共21页
27.(1)①,;--------------------2分②作DE⊥AC交AC于点E.Rt△ADE中,由,AD=2可得DE=1,AE.Rt△CDE中,由,DE=1,可得EC=1.∴AC.Rt△ACH中,由,可得AH;--------------4分(2)线段AH与AB+AC之间的数量关系:2AH=AB+AC证明:延长AB和CH交于点F,取BF中点G,连接GH.易证△ACH≌△AFH.∴,.∴.∵,∴.∴.∴.∴.--------------7分西城区27.正方形的边长为,将射线绕点顺时针旋转,所得射线与线段交于点,作于点,点与点关于直线对称,连接.(1)如图,当时,①依题意补全图.②用等式表示与之间的数量关系:__________.(2)当时,探究与之间的数量关系并加以证明.(3)当时,若边的中点为,直接写出线段长的最大值.第21页共21页
【解析】(1)①补全的图形如图所示:②.(2),连接,,,∴,∴,∵,第21页共21页
,∴.(3)∵,∴点在以为直径的圆上,∴.海淀区27.如图,已知,点为射线上的一个动点,过点作,交于点,点在内,且满足,.(1)当时,求的长;(2)在点的运动过程中,请判断是否存在一个定点,使得的值不变?并证明你的判断.27..解:(1)作⊥交于.第21页共21页
∵⊥,,∴.∴.∴.……………1分∵,,∴,.∴.∴.………………3分(2)当点在射线上且满足时,的值不变,始终为1.理由如下:………………4分当点与点不重合时,延长到使得.∵,∴.∴.∵,是公共边,∴≌.∴.………………5分作⊥于,⊥于.∵,∴.………………6分∵⊥,⊥,⊥,∴四边形为矩形.∴.∵,∴.∵⊥,∴.∴,即.第21页共21页
当点与点重合时,由上过程可知结论成立.……………7分丰台区27.如图,Rt△ABC中,∠ACB=90°,CA=CB,过点C在△ABC外作射线CE,且∠BCE=,点B关于CE的对称点为点D,连接AD,BD,CD,其中AD,BD分别交射线CE于点M,N.(1)依题意补全图形;(2)当=30°时,直接写出∠CMA的度数;(3)当0°<<45°时,用等式表示线段AM,CN之间的数量关系,并证明.27.解:(1)如图;…………………1分(2)45°;…………………2分(3)结论:AM=CN.…………………3分证明:作AG⊥EC的延长线于点G.∵点B与点D关于CE对称,∴CE是BD的垂直平分线.∴CB=CD.∴∠1=∠2=.∵CA=CB,∴CA=CD.∴∠3=∠CAD.∵∠4=90°,∴∠3=(180°∠ACD)=(180°90°)=45°.∴∠5=∠2+∠3=+45°-=45°.…………………5分∵∠4=90°,CE是BD的垂直平分线,∴∠1+∠7=90°,∠1+∠6=90°.∴∠6=∠7.∵AG⊥EC,第21页共21页
∴∠G=90°=∠8.∴在△BCN和△CAG中,∠8=∠G,∠7=∠6,BC=CA,∴△BCN≌△CAG.∴CN=AG.∵Rt△AMG中,∠G=90°,∠5=45°,∴AM=AG.∴AM=CN.…………………7分(其他证法相应给分.)石景山区27.在正方形ABCD中,M是BC边上一点,点P在射线AM上,将线段AP绕点A顺时针旋转得到线段AQ,连接BP,DQ.(1)依题意补全图1;(2)①连接,若点P,Q,D恰好在同一条直线上,求证:;②若点P,Q,C恰好在同一条直线上,则BP与AB的数量关系为:.27.(1)补全图形如图1.…………………1分第21页共21页
图1(2)①证明:图2连接,如图2,∵线段绕点顺时针旋转90°得到线段,∴,.∵四边形是正方形,∴,.∴.∴△≌△.…………………3分∴,.∵在中,,∴.∵在中,,又∵,,∴.…………………5分②.…………………7分第21页共21页
证明:过点A作AE⊥PQ于E,连接BEAC∴AE是△PAQ的垂线∵三△PAQ是等腰直角三角形(已证)∴AE是等腰直角三角形PAQ的垂线,角平分线∴∠AEP=90°,AE=PE∵正方形ABCD∴∠ABC=90°∠ACB=∠BAC=45°∠AEP+∠ABC=180°∴A,B,C,E四点共圆∴∠AEB=∠ACB=45°,∠CEB=∠BAC=45°∴∠AEB=∠CEB=45°∵BE=BE∴△ABE≌△PBE(SAS)∴BP=AB朝阳区27.如图,在菱形ABCD中,∠DAB=60°,点E为AB边上一动点(与点A,B不重合),连接CE,将∠ACE的两边所在射线CE,CA以点C为中心,顺时针旋转120°,分别交射线AD于点F,G.(1)依题意补全图形;(2)若∠ACE=α,求∠AFC的大小(用含α的式子表示);(3)用等式表示线段AE、AF与CG之间的数量关系,并证明.第21页共21页
27.(1)补全的图形如图所示.……………………………………1分(2)解:由题意可知,∠ECF=∠ACG=120°.∴∠FCG=∠ACE=α.∵四边形ABCD是菱形,∠DAB=60°,∴∠DAC=∠BAC=30°.……………………………………………2分∴∠AGC=30°.∴∠AFC=α+30°.…………………………3分(3)用等式表示线段AE、AF与CG之间的数量关系为.证明:作CH⊥AG于点H.第21页共21页
由(2)可知∠BAC=∠DAC=∠AGC=30°.∴CA=CG.…………………………………………………5分∴HG=AG.∵∠ACE=∠GCF,∠CAE=∠CGF,∴△ACE≌△GCF.……………………………6分∴AE=FG.在Rt△HCG中,∴AG=CG.…………………………………………7分即AF+AE=CG.燕山区27.如图,抛物线的顶点为M,直线y=m与抛物线交于点A,B,若△AMB为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M称为碟顶.(1)由定义知,取AB中点N,连结MN,MN与AB的关系是(2)抛物线对应的准蝶形必经过B(m,m),则m=,对应的碟宽AB是第21页共21页
(3)抛物线对应的碟宽在x轴上,且AB=6.①求抛物线的解析式;②在此抛物线的对称轴上是否有这样的点P(,),使得∠APB为锐角,若有,请求出的取值范围.若没有,请说明理由.,备用图27.解:(1)MN与AB的关系是MN⊥AB,MN=AB…………………………………2′(2)m=2对应的碟宽是4…………………………………4′(3)①由已知,抛物线必过(3,0),代入得,∴抛物线的解析式是…………………………………5′②由①知,的对称轴上P(0,3),P(0,-3)时,∠APB为直角,∴在此抛物线的对称轴上有这样的点P,使得∠APB为锐角,的取值范围是…………………………………7′门头沟区27.如图,在△ABC中,AB=AC,,点D是BC的中点,,第21页共21页
.(1)_________°;(用含的式子表示)(2)作射线DM与边AB交于点M,射线DM绕点D顺时针旋转,与AC边交于点N.①根据条件补全图形;②写出DM与DN的数量关系并证明;③用等式表示线段与之间的数量关系,(用含的锐角三角函数表示)并写出解题思路.27.(本小题满分7分)(1)……………………………………………1分(2)①补全图形正确……………………………………2分②数量关系:…………………………………3分∵∴DA平分∵,∴,……………………4分∵∴∵∴∴……………………5分∴③数量关系:……………………6分证明思路:a.由可得b.由可得,进而通过,可得第21页共21页
进而得到c.过可得,最终得到……………7分大兴区27.如图,在等腰直角△ABC中,∠CAB=90°,F是AB边上一点,作射线CF,过点B作BG⊥CF于点G,连接AG.(1)求证:∠ABG=∠ACF;(2)用等式表示线段CG,AG,BG之间的等量关系,并证明.27.(1)证明 :∵∠CAB=90°.∵BG⊥CF于点G,∴∠BGF=∠CAB=90°.∵∠GFB=∠CFA.………………………………………………1分∴∠ABG=∠ACF.………………………………………………2分(2)CG=AG+BG.…………………………………………………3分证明:在CG上截取CH=BG,连接AH,…………………………4分∵△ABC是等腰直角三角形,∴∠CAB=90°,AB=AC.∵∠ABG=∠ACH.∴△ABG≌△ACH.……………………………………………………5分∴AG=AH,∠GAB=∠HAC.第21页共21页
∴∠GAH=90°.∴.∴GH=AG.………………………………………………………6分∴CG=CH+GH=AG+BG.………………………………………7分平谷区27.在△ABC中,AB=AC,CD⊥BC于点C,交∠ABC的平分线于点D,AE平分∠BAC交BD于点E,过点E作EF∥BC交AC于点F,连接DF.(1)补全图1;(2)如图1,当∠BAC=90°时,①求证:BE=DE;②写出判断DF与AB的位置关系的思路(不用写出证明过程);(3)如图2,当∠BAC=α时,直接写出α,DF,AE的关系.图2图127.解:(1)补全图1;1第21页共21页
(2)①延长AE,交BC于点H.2∵AB=AC,AE平分∠BAC,∴AH⊥BC于H,BH=HC.∵CD⊥BC于点C,∴EH∥CD.∴BE=DE.3②延长FE,交AB于点G.由AB=AC,得∠ABC=∠ACB.由EF∥BC,得∠AGF=∠AFG.得AG=AF.由等腰三角形三线合一得GE=EF.4由∠GEB=∠FED,可证△BEG≌△DEF.可得∠ABE=∠FDE.5从而可证得DF∥AB.6(3).7怀柔区27.如图,在△ABC中,∠A=90°,AB=AC,点D是BC上任意一点,将线段AD绕点A逆时针方向旋转90°,得到线段AE,连结EC.(1)依题意补全图形;(2)求∠ECD的度数;(3)若∠CAE=7.5°,AD=1,将射线DA绕点D顺时针旋转60°交EC的延长线于点F,请写出求AF长的思路.第21页共21页
27.(1)如图………………………………………………1分(2)∵线段AD绕点A逆时针方向旋转90°,得到线段AE.∴∠DAE=90°,AD=AE.∴∠DAC+∠CAE=90°.∵∠BAC=90°,∴∠BAD+∠DAC=90°.∴∠BAD=∠CAE.…………………………………………………………………………2分又∵AB=AC,∴△ABD≌△ACE.∴∠B=∠ACE.∵△ABC中,∠A=90°,AB=AC,∴∠B=∠ACB=∠ACE=45°.∴∠ECD=∠ACB+∠ACE=90°.……………………………………………………………4分(3)Ⅰ.连接DE,由于△ADE为等腰直角三角形,所以可求DE=;……………………5分Ⅱ.由∠ADF=60°,∠CAE=7.5°,可求∠EDC的度数和∠CDF的度数,从而可知DF的长;…………………………………………………………………………………………………6分Ⅲ.过点A作AH⊥DF于点H,在Rt△ADH中,由∠ADF=60°,AD=1可求AH、DH的长;Ⅳ.由DF、DH的长可求HF的长;第21页共21页
Ⅴ.在Rt△AHF中,由AH和HF,利用勾股定理可求AF的长.…………………………7分延庆区27.如图1,正方形ABCD中,点E是BC延长线上一点,连接DE,过点B作BF⊥DE于点F,连接FC.(1)求证:∠FBC=∠CDF.(2)作点C关于直线DE的对称点G,连接CG,FG.①依据题意补全图形;②用等式表示线段DF,BF,CG之间的数量关系并加以证明.图127.(1)证明:∵四边形ABCD是正方形,∴∠DCB=90°.∴∠CDF+∠E=90°.∵BF⊥DE,∴∠FBC+∠E=90°.∴∠FBC=∠CDF.……2分(2)①第21页共21页
……3分②猜想:数量关系为:BF=DF+CG.证明:在BF上取点M使得BM=DF连接CM.∵四边形ABCD是正方形,∴BC=DC.∵∠FBC=∠CDF,BM=DF,∴△BMC≌△DFC.∴CM=CF,∠1=∠2.∴△MCF是等腰直角三角形.∴∠MCF=90°,∠4=45°.……5分∵点C与点G关于直线DE对称,∴CF=GF,∠5=∠6.∵BF⊥DE,∠4=45°,∴∠5=45°,∴∠CFG=90°,∴∠CFG=∠MCF,∴CM∥GF.∵CM=CF,CF=GF,∴CM=GF,∴四边形CGFM是平行四边形,∴CG=MF.∴BF=DF+CG.……7分顺义区27.如图,在正方形ABCD中,E是BC边上一点,连接AE,延长CB至点F,使BF=BE,过点F作FH⊥AE于点H,射线FH分别交AB、CD于点M、N,交对角线AC于点P,连接AF.第21页共21页
(1)依题意补全图形;(2)求证:∠FAC=∠APF;(3)判断线段FM与PN的数量关系,并加以证明.27.(1)补全图如图所示.…………………………………………………………1分(2)证明∵正方形ABCD,∴∠BAC=∠BCA=45°,∠ABC=90°,∴∠PAH=45°-∠BAE.∵FH⊥AE.∴∠APF=45°+∠BAE.∵BF=BE,∴AF=AE,∠BAF=∠BAE.∴∠FAC=45°+∠BAF.∴∠FAC=∠APF.……………………………4分(3)判断:FM=PN.……………………………………5分证明:过B作BQ∥MN交CD于点Q,∴MN=BQ,BQ⊥AE.∵正方形ABCD,∴AB=BC,∠ABC=∠BCD=90°.∴∠BAE=∠CBQ.∴△ABE≌△BCQ.∴AE=BQ.∴AE=MN.∵∠FAC=∠APF,∴AF=FP.∵AF=AE,∴AE=FP.∴FP=MN.第21页共21页
∴FM=PN.……………………………………………………………8分第21页共21页
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)