2020年广西玉林市中考数学试卷
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
2020年广西玉林市中考数学试卷一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,把正确答案的标号填(涂)在答题卡内相应的位置上.1.(3分)2的倒数是( )A.B.﹣C.2D.﹣22.(3分)sin45°的值是( )A.B.C.D.13.(3分)2019新型冠状病毒的直径是0.00012mm,将0.00012用科学记数法表示是( )A.120×10﹣6B.12×10﹣3C.1.2×10﹣4D.1.2×10﹣54.(3分)如图是由4个完全相同的正方体搭成的几何体,则( )A.三视图都相同B.俯视图与左视图相同C.主视图与俯视图相同D.主视图与左视图相同5.(3分)下列计算正确的是( )A.8a﹣a=7B.a2+a2=2a4C.2a•3a=6a2D.a6÷a2=a36.(3分)下列命题中,其逆命题是真命题的是( )A.对顶角相等B.两直线平行,同位角相等C.全等三角形的对应角相等D.正方形的四个角都相等7.(3分)在对一组样本数据进行分析时,小华列出了方差的计算公式:s2=,由公式提供的信息,则下列说法错误的是( )A.样本的容量是4B.样本的中位数是3C.样本的众数是3D.样本的平均数是3.58.(3分)已知:点D,E分别是△ABC的边AB,AC的中点,如图所示.求证:DE∥BC,且DE=BC.第22页(共22页),证明:延长DE到点F,使EF=DE,连接FC,DC,AF,又AE=EC,则四边形ADCF是平行四边形,接着以下是排序错误的证明过程:①∴DFBC;②∴CFAD.即CFBD;③∴四边形DBCF是平行四边形;④∴DE∥BC,且DE=BC.则正确的证明顺序应是:( )A.②→③→①→④B.②→①→③→④C.①→③→④→②D.①→③→②→④9.(3分)如图是A,B,C三岛的平面图,C岛在A岛的北偏东35°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西55°方向,则A,B,C三岛组成一个( )A.等腰直角三角形B.等腰三角形C.直角三角形D.等边三角形10.(3分)观察下列按一定规律排列的n个数:2,4,6,8,10,12,…,若最后三个数之和是3000,则n等于( )A.499B.500C.501D.100211.(3分)一个三角形木架三边长分别是75cm,100cm,120cm,现要再做一个与其相似的三角形木架,而只有长为60cm和120cm的两根木条.要求以其中一根为一边,从另一根截下两段作为另两边(允许有余料),则不同的截法有( )A.一种B.两种C.三种D.四种12.(3分)把二次函数y=ax2+bx+c(a>0)的图象作关于x轴的对称变换,所得图象的解析式为y=﹣a(x﹣1)2+4a,若(m﹣1)a+b+c≤0,则m的最大值是( )第22页(共22页),A.﹣4B.0C.2D.6二、填空题:本大题共6小题,每小题3分,共18分.把答案填在答题卡中的横线上.13.(3分)计算:0﹣(﹣6)= .14.(3分)分解因式:a3﹣a= .15.(3分)如图,将两张对边平行且等宽的纸条交叉叠放在一起,则重合部分构成的四边形ABCD 菱形(填“是”或“不是”).16.(3分)经过人民中路十字路口红绿灯处的两辆汽车,可能直行,也可能向左转,如果这两种可能性大小相同,则至少有一辆向左转的概率是 .17.(3分)如图,在边长为3的正六边形ABCDEF中,将四边形ADEF绕顶点A顺时针旋转到四边形AD'E'F′处,此时边AD′与对角线AC重叠,则图中阴影部分的面积是 .18.(3分)已知:函数y1=|x|与函数y2=的部分图象如图所示,有以下结论:①当x<0时,y1,y2都随x的增大而增大;②当x<﹣1时,y1>y2;③y1与y2的图象的两个交点之间的距离是2;④函数y=y1+y2的最小值是2.则所有正确结论的序号是 .第22页(共22页),三、解答题:本大题共8小题,满分共66分.解答应写出证明过程成演算步骤(含相应的文字说明).将解答写在答题卡上.19.(6分)计算:•(π﹣3.14)0﹣|﹣1|+()2.20.(6分)解方程组:.21.(8分)已知关于x的一元二次方程x2+2x﹣k=0有两个不相等的实数根.(1)求k的取值范围;(2)若方程的两个不相等的实数根是a,b,求﹣的值.22.(8分)在镇、村两委及帮扶人大力扶持下,贫困户周大叔与某公司签订了农产品销售合同,并于今年春在自家荒坡上种植了A,B,C,D四种不同品种的果树苗共300棵,其中C品种果树苗的成活率为90%,几个品种的果树苗种植情况及其成活情况分别绘制在如图图①和图②两个尚不完整的统计图中.(1)种植B品种果树苗有 棵;(2)请你将图②的统计图补充完整;(3)通过计算说明,哪个品种的果树苗成活率最高?23.(8分)如图,AB是⊙O的直径,点D在直径AB上(D与A,B不重合),CD⊥AB,且CD=AB,连接CB,与⊙O交于点F,在CD上取一点E,使EF=EC.(1)求证:EF是⊙O的切线;(2)若D是OA的中点,AB=4,求CF的长.第22页(共22页),24.(8分)南宁至玉林高速铁路已于去年开工建设.玉林良睦隧道是全线控制性工程,首期打通共有土石方总量为600千立方米,设计划平均每天挖掘土石方x千立方米,总需用时间y天,且完成首期工程限定时间不超过600天.(1)求y与x之间的函数关系式及自变量x的取值范围;(2)由于工程进度的需要,实际平均每天挖掘土石方比原计划多0.2千立方米,工期比原计划提前了100天完成,求实际挖掘了多少天才能完成首期工程?25.(10分)如图,四边形ABCD中,对角线AC与BD交于点O,且OA=OB=OC=OD=AB.(1)求证:四边形ABCD是正方形;(2)若H是边AB上一点(H与A,B不重合),连接DH,将线段DH绕点H顺时针旋转90°,得到线段HE,过点E分别作BC及AB延长线的垂线,垂足分别为F,G.设四边形BGEF的面积为s1,以HB,BC为邻边的矩形的面积为s2,且s1=s2.当AB=2时,求AH的长.26.(12分)如图,已知抛物线:y1=﹣x2﹣2x+3与x轴交于A,B两点(A在B的左侧),与y轴交于点C.(1)直接写出点A,B,C的坐标;(2)将抛物线y1经过向右与向下平移,使得到的抛物线y2与x轴交于B,B'两点(B'在B的右侧),顶点D的对应点为点D',若∠BD'B'=90°,求点B'的坐标及抛物线y2的解析式;(3)在(2)的条件下,若点Q在x轴上,则在抛物线y1或y2上是否存在点P,使以B′,C,Q,P为顶点的四边形是平行四边形?如果存在,求出所有符合条件的点P第22页(共22页),的坐标;如果不存在,请说明理由.第22页(共22页),2020年广西玉林市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,把正确答案的标号填(涂)在答题卡内相应的位置上.1.(3分)2的倒数是( )A.B.﹣C.2D.﹣2【解答】解:2的倒数是.故选:A.2.(3分)sin45°的值是( )A.B.C.D.1【解答】解:sin45°=.故选:B.3.(3分)2019新型冠状病毒的直径是0.00012mm,将0.00012用科学记数法表示是( )A.120×10﹣6B.12×10﹣3C.1.2×10﹣4D.1.2×10﹣5【解答】解:0.00012=1.2×10﹣4.故选:C.4.(3分)如图是由4个完全相同的正方体搭成的几何体,则( )A.三视图都相同B.俯视图与左视图相同C.主视图与俯视图相同D.主视图与左视图相同【解答】解:如图所示:第22页(共22页),,故该几何体的主视图和左视图相同.故选:D.5.(3分)下列计算正确的是( )A.8a﹣a=7B.a2+a2=2a4C.2a•3a=6a2D.a6÷a2=a3【解答】解:A.因为8a﹣a=7a,所以A选项错误;B.因为a2+a2=2a2,所以B选项错误;C.因为2a•3a=6a2,所以C选项正确;D.因为a6÷a2=a4,所以D选项错误.故选:C.6.(3分)下列命题中,其逆命题是真命题的是( )A.对顶角相等B.两直线平行,同位角相等C.全等三角形的对应角相等D.正方形的四个角都相等【解答】解:A,其逆命题是:两个相等的角是对顶角,故是假命题;B,其逆命题是:同位角相等,两直线平行,故是真命题;C,其逆命题是:对应角相等的两个三角形是全等三角形.大小不同的两个等边三角形虽然对应角相等但不全等,故是假命题;D,其逆命题是:四个角都相等的四边形是矩形,故是假命题;故选:B.第22页(共22页),7.(3分)在对一组样本数据进行分析时,小华列出了方差的计算公式:s2=,由公式提供的信息,则下列说法错误的是( )A.样本的容量是4B.样本的中位数是3C.样本的众数是3D.样本的平均数是3.5【解答】解:由题意知,这组数据为2、3、3、4,所以这组数据的样本容量为4,中位数为=3,众数为3,平均数为=3,故选:D.8.(3分)已知:点D,E分别是△ABC的边AB,AC的中点,如图所示.求证:DE∥BC,且DE=BC.证明:延长DE到点F,使EF=DE,连接FC,DC,AF,又AE=EC,则四边形ADCF是平行四边形,接着以下是排序错误的证明过程:①∴DFBC;②∴CFAD.即CFBD;③∴四边形DBCF是平行四边形;④∴DE∥BC,且DE=BC.则正确的证明顺序应是:( )A.②→③→①→④B.②→①→③→④C.①→③→④→②D.①→③→②→④【解答】证明:延长DE到点F,使EF=DE,连接FC,DC,AF,∵点D,E分别是△ABC的边AB,AC的中点,∴AD=BD,AE=EC,∴四边形ADCF是平行四边形,∴CFAD.即CFBD,∴四边形DBCF是平行四边形,∴DFBC,第22页(共22页),∴DE∥BC,且DE=BC.∴正确的证明顺序是②→③→①→④,故选:A.9.(3分)如图是A,B,C三岛的平面图,C岛在A岛的北偏东35°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西55°方向,则A,B,C三岛组成一个( )A.等腰直角三角形B.等腰三角形C.直角三角形D.等边三角形【解答】解:如图,过点C作CD∥AE交AB于点D,∴∠DCA=∠EAC=35°,∵AE∥BF,∴CD∥BF,∴∠BCD=∠CBF=55°,∴∠ACB=∠ACD+∠BCD=35°+55°=90°,∴△ABC是直角三角形.∴∠ACD=∠ACB﹣∠BCD=90°﹣55°,=35°,∵CD∥AE,∴∠EAC=∠ACD=35°,∴∠CAD=∠EAD﹣∠CAE=80°﹣35°=45°,第22页(共22页),∴∠ABC=∠ACB﹣∠CAD=45°,∴CA=CB,∴△ABC是等腰直角三角形.故选:A.10.(3分)观察下列按一定规律排列的n个数:2,4,6,8,10,12,…,若最后三个数之和是3000,则n等于( )A.499B.500C.501D.1002【解答】解:由题意,得第n个数为2n,那么2n+2(n﹣1)+2(n﹣2)=3000,解得:n=501,故选:C.11.(3分)一个三角形木架三边长分别是75cm,100cm,120cm,现要再做一个与其相似的三角形木架,而只有长为60cm和120cm的两根木条.要求以其中一根为一边,从另一根截下两段作为另两边(允许有余料),则不同的截法有( )A.一种B.两种C.三种D.四种【解答】解:长120cm的木条与三角形木架的最长边相等,则长120cm的木条不能作为一边,设从120cm的木条上截下两段长分别为xcm,ycm(x+y≤120),由于长60cm的木条不能与75cm的一边对应,否则x、y有大于120cm,当长60cm的木条与100cm的一边对应,则==,解得:x=45,y=72;当长60cm的木条与120cm的一边对应,则==,解得:x=37.5,y=50.答:有两种不同的截法:把120cm的木条截成45cm、72cm两段或把120cm的木条截成37.5cm、50cm两段.故选:B.12.(3分)把二次函数y=ax2+bx+c(a>0)的图象作关于x轴的对称变换,所得图象的解析式为y=﹣a(x﹣1)2+4a,若(m﹣1)a+b+c≤0,则m的最大值是( )A.﹣4B.0C.2D.6第22页(共22页),【解答】解:∵把二次函数y=ax2+bx+c(a>0)的图象作关于x轴的对称变换,所得图象的解析式为y=﹣a(x﹣1)2+4a,∴原二次函数的顶点为(1,﹣4a),∴原二次函数为y=a(x﹣1)2﹣4a=ax2﹣2ax﹣3a,∴b=﹣2a,c=﹣3a,∵(m﹣1)a+b+c≤0,∴(m﹣1)a﹣2a﹣3a≤0,∵a>0,∴m﹣1﹣2﹣3≤0,即m≤6,∴m的最大值为6,故选:D.二、填空题:本大题共6小题,每小题3分,共18分.把答案填在答题卡中的横线上.13.(3分)计算:0﹣(﹣6)= 6 .【解答】解:原式=0+6=6.故答案为:6.14.(3分)分解因式:a3﹣a= a(a+1)(a﹣1) .【解答】解:a3﹣a,=a(a2﹣1),=a(a+1)(a﹣1).故答案为:a(a+1)(a﹣1).15.(3分)如图,将两张对边平行且等宽的纸条交叉叠放在一起,则重合部分构成的四边形ABCD 是 菱形(填“是”或“不是”).【解答】解:如图,第22页(共22页),∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,作AE⊥BC于点E,AF⊥DC于点F,∵两张等宽的长方形纸条交叉叠放在一起,∴AE=AF,∴S平行四边形ABCD=BC•AE=DC•AF,∴BC=DC,∴▱ABCD是菱形.故答案为:是.16.(3分)经过人民中路十字路口红绿灯处的两辆汽车,可能直行,也可能向左转,如果这两种可能性大小相同,则至少有一辆向左转的概率是 .【解答】解:画树状图如下:由树状图知,共有4种等可能结果,其中至少有一辆向左转的有3种等可能结果,所以至少有一辆向左转的概率为,故答案为:.17.(3分)如图,在边长为3的正六边形ABCDEF中,将四边形ADEF绕顶点A顺时针旋转到四边形AD'E'F′处,此时边AD′与对角线AC重叠,则图中阴影部分的面积是 3π .第22页(共22页),【解答】解:∵在边长为3的正六边形ABCDEF中,∠DAC=30°,∠B=∠BCD=120°,AB=BC,∴∠BAC=∠BCA=30°,∴∠ACD=90°,∵CD=3,∴AD=2CD=6,∴图中阴影部分的面积=S四边形ADEF+S扇形DAD′﹣S四边形AF′E′D′,∵将四边形ADEF绕顶点A顺时针旋转到四边形AD'E'F′处,∴S四边形ADEF=S四边形AD′E′F′∴图中阴影部分的面积=S扇形DAD′==3π,故答案为:3π.18.(3分)已知:函数y1=|x|与函数y2=的部分图象如图所示,有以下结论:①当x<0时,y1,y2都随x的增大而增大;②当x<﹣1时,y1>y2;③y1与y2的图象的两个交点之间的距离是2;④函数y=y1+y2的最小值是2.则所有正确结论的序号是 ②③④ .【解答】解:补全函数图象如图:①当x<0时,y1随x的增大而增大,y2随x的增大而减小;故①错误;第22页(共22页),②当x<﹣1时,y1>y2;故②正确;③y1与y2的图象的两个交点之间的距离是2;故③正确;④由图象可知,函数y=y1+y2的最小值是2,故④正确.综上所述,正确的结论是②③④.故答案为②③④.三、解答题:本大题共8小题,满分共66分.解答应写出证明过程成演算步骤(含相应的文字说明).将解答写在答题卡上.19.(6分)计算:•(π﹣3.14)0﹣|﹣1|+()2.【解答】解:原式=×1﹣(﹣1)+9=﹣+1+9=10.20.(6分)解方程组:.【解答】解:,①+②×3得:7x=7,解得:x=1,把x=1代入①得:y=1,则方程组的解为.21.(8分)已知关于x的一元二次方程x2+2x﹣k=0有两个不相等的实数根.(1)求k的取值范围;第22页(共22页),(2)若方程的两个不相等的实数根是a,b,求﹣的值.【解答】解:(1)∵方程有两个不相等的实数根,∴△=b2﹣4ac=4+4k>0,解得k>﹣1.∴k的取值范围为k>﹣1;(2)由根与系数关系得a+b=﹣2,a•b=﹣k,﹣===1.22.(8分)在镇、村两委及帮扶人大力扶持下,贫困户周大叔与某公司签订了农产品销售合同,并于今年春在自家荒坡上种植了A,B,C,D四种不同品种的果树苗共300棵,其中C品种果树苗的成活率为90%,几个品种的果树苗种植情况及其成活情况分别绘制在如图图①和图②两个尚不完整的统计图中.(1)种植B品种果树苗有 75 棵;(2)请你将图②的统计图补充完整;(3)通过计算说明,哪个品种的果树苗成活率最高?【解答】解:(1)300×(1﹣35%﹣20%﹣20%)=300×25%=75(棵).故答案为:75;(2)300×20%×90%=54(棵),补全统计图如图所示:第22页(共22页),(3)A品种的果树苗成活率:×100%=80%,B品种的果树苗成活率:×100%=80%,C品种的果树苗成活率:90%,D品种的果树苗成活率:×100%=85%,所以,C品种的果树苗成活率最高.23.(8分)如图,AB是⊙O的直径,点D在直径AB上(D与A,B不重合),CD⊥AB,且CD=AB,连接CB,与⊙O交于点F,在CD上取一点E,使EF=EC.(1)求证:EF是⊙O的切线;(2)若D是OA的中点,AB=4,求CF的长.【解答】(1)证明:连接OF,如图1所示:∵CD⊥AB,∴∠DBC+∠C=90°,∵OB=OF,∴∠DBC=∠OFB,∵EF=EC,∴∠C=∠EFC,∴∠OFB+∠EFC=90°,第22页(共22页),∴∠OFE=180°﹣90°=90°,∴OF⊥EF,∵OF为⊙O的半径,∴EF是⊙O的切线;(2)解:连接AF,如图2所示:∵AB是⊙O的直径,∴∠AFB=90°,∵D是OA的中点,∴OD=DA=OA=AB=×4=1,∴BD=3OD=3,∵CD⊥AB,CD=AB=4,∴∠CDB=90°,由勾股定理得:BC===5,∵∠AFB=∠CDB=90°,∠FBA=∠DBC,∴△FBA∽△DBC,∴=,∴BF===,∴CF=BC﹣BF=5﹣=.第22页(共22页),24.(8分)南宁至玉林高速铁路已于去年开工建设.玉林良睦隧道是全线控制性工程,首期打通共有土石方总量为600千立方米,设计划平均每天挖掘土石方x千立方米,总需用时间y天,且完成首期工程限定时间不超过600天.(1)求y与x之间的函数关系式及自变量x的取值范围;(2)由于工程进度的需要,实际平均每天挖掘土石方比原计划多0.2千立方米,工期比原计划提前了100天完成,求实际挖掘了多少天才能完成首期工程?【解答】解:(1)根据题意可得:y=,∵y≤600,∴x≥1;(2)设实际挖掘了m天才能完成首期工程,根据题意可得:﹣=0.2,解得:x=﹣600(舍)或500,检验得:x=500是原方程的根,答:实际挖掘了500天才能完成首期工程.25.(10分)如图,四边形ABCD中,对角线AC与BD交于点O,且OA=OB=OC=OD=AB.(1)求证:四边形ABCD是正方形;(2)若H是边AB上一点(H与A,B不重合),连接DH,将线段DH绕点H顺时针旋转90°,得到线段HE,过点E分别作BC及AB延长线的垂线,垂足分别为F,G.设四边形BGEF的面积为s1,以HB,BC为邻边的矩形的面积为s2,且s1=s2.当AB=2时,求AH的长.【解答】(1)证明:∵OA=OB=OC=OD,∴AC=BD,∴平行四边形ABCD是矩形,第22页(共22页),∵OA=OB=OC=OD=AB,∴OA2+OB2=AB2,∴∠AOB=90°,即AC⊥BD,∴四边形ABCD是正方形;(2)解:∵EF⊥BC,EG⊥AG,∴∠G=∠EFB=∠FBG=90°,∴四边形BGEF是矩形,∵将线段DH绕点H顺时针旋转90°,得到线段HE,∴∠DHE=90°,DH=HE,∴∠ADH+∠AHD=∠AHD+∠EHG=90°,∴∠ADH=∠EHG,∵∠DAH=∠G=90°,∴△ADH≌△GHE(AAS),∴AD=HG,AH=EG,∵AB=AD,∴AB=HG,∴AH=BG,∴BG=EG,∴矩形BGEF是正方形,设AH=x,则BG=EG=x,∵s1=s2.∴x2=2(2﹣x),解得:x=﹣1(负值舍去),∴AH=﹣1.第22页(共22页),26.(12分)如图,已知抛物线:y1=﹣x2﹣2x+3与x轴交于A,B两点(A在B的左侧),与y轴交于点C.(1)直接写出点A,B,C的坐标;(2)将抛物线y1经过向右与向下平移,使得到的抛物线y2与x轴交于B,B'两点(B'在B的右侧),顶点D的对应点为点D',若∠BD'B'=90°,求点B'的坐标及抛物线y2的解析式;(3)在(2)的条件下,若点Q在x轴上,则在抛物线y1或y2上是否存在点P,使以B′,C,Q,P为顶点的四边形是平行四边形?如果存在,求出所有符合条件的点P的坐标;如果不存在,请说明理由.【解答】解:(1)对于y1=﹣x2﹣2x+3,令y1=0,得到﹣x2﹣2x+3=0,解得x=﹣3或1,∴A(﹣3,0),B(1,0),令x=0,得到y=3,∴C(0,3).(2)设平移后的抛物线的解析式为y=﹣(x﹣a)2+b,如图1中,过点D′作D′H⊥OB′于H.,连接BD′,B′D′.第22页(共22页),∵D′是抛物线的顶点,∴D′B=D′B′,D′(a,b),∵∠BD′B′=90°,D′H⊥BB′,∴BH=HB′,∴D′H=BH=HB′=b,∴a=1+b,又∵y=﹣(x﹣a)2+b,经过B(1,0),∴b=(1﹣a)2,解得a=2或1(不合题意舍弃),b=1,∴B′(3,1),y2=﹣(x﹣2)2+1=﹣x2+4x﹣3.(3)如图2中,观察图象可知,当点P的纵坐标为3或﹣3时,存在满足条件的平行四边形.对于y1=﹣x2﹣2x+3,令y=3,x2+2x=0,解得x=0或﹣2,可得P1(﹣2,3),令y=﹣3,则x2+2x﹣6=0,解得x=﹣1,可得P2(﹣1﹣,﹣3),P3(﹣1+,﹣3),对于y2=﹣x2+4x﹣3,令y=3,方程无解,令y=﹣3,则x2﹣4x=0,解得x=0或4,可得P4(0,﹣3),P5(4,﹣3),综上所述,满足条件的点P的坐标为(﹣2,3)或(﹣1﹣,﹣3)或(﹣1+,﹣3)或(0,﹣3)或(4,﹣3).声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2020/7/309:39:35;用户:柯瑞;邮箱:ainixiaoke00@163.com;学号:500557第22页(共22页)
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)