首页

2022新高考数学(江苏版)一轮复习训练:第三章第5讲幂函数与二次函数(附解析)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/8

2/8

剩余6页未读,查看更多内容需下载

[A级 基础练]1.若一次函数y=ax+b的图象经过第二、三、四象限,则二次函数y=ax2+bx的图象只可能是(  )解析:选C.因为一次函数y=ax+b的图象经过第二、三、四象限,所以a<0,b<0,所以二次函数的图象开口向下,对称轴方程x=-<0.只有选项C适合,故选C.2.如图,函数y=,y=x,y=1的图象和直线x=1将平面直角坐标系的第一象限分成八个部分.若幂函数f(x)的图象经过的部分是④⑧,则f(x)可能是(  )A.y=x2       B.y=C.y=xD.y=x-2解析:选B.因为函数y=xα的图象过④⑧部分,所以函数y=xα在第一象限内单调递减,所以α<0.又易知当x=2时,y>,所以只有B选项符合题意.3.有下列四个幂函数,某同学研究了其中的一个函数,并给出这个函数的三个性质:(1)是偶函数;(2)值域是{y|y∈R,且y≠0};(3)在(-∞,0)上单调递增.如果给出的三个性质中,有两个正确,一个错误,则该同学研究的函数是(  )A.y=x-1      B.y=x-2 C.y=x3D.y=x解析:选B.对于A,y=x-1是奇函数,值域是{y|y∈R,且y≠0},在(-∞,0)上单调递减,三个性质中有两个不正确;对于B,y=x-2是偶函数,值域是{y|y∈R,且y>0},在(-∞,0)上单调递增,三个性质中有两个正确,符合条件;同理可判断C,D中的函数不符合条件.4.(多选)已知函数f(x)是定义在R上的偶函数,当x≥0时,f(x)=x-x2,则下列说法正确的是(  )A.f(x)的最大值为B.f(x)在(-1,0)上是增函数C.f(x)>0的解集为(-1,1)D.f(x)+2x≥0的解集为[0,3]解析:选AD.因为x≥0时,f(x)=x-x2=-+,所以f(x)的最大值为,A正确;f(x)在上是减函数,B错误;f(x)>0的解集为(-1,0)∪(0,1),C错误;当x≥0时,f(x)+2x=3x-x2≥0的解集为[0,3],当x<0时,f(x)+2x=x-x2≥0无解,故D正确.5.已知f(x)=-2x2+bx+c,不等式f(x)>0的解集为(-1,3).若对任意的x∈[-1,0],f(x)+m≥4恒成立,则m的取值范围是(  )A.(-∞,2]B.[4,+∞)C.[2,+∞)D.(-∞,4]解析:选B.因为f(x)>0的解集为(-1,3),所以-2x2+bx+c=0 的两个根为-1,3,所以得令g(x)=f(x)+m,则g(x)=-2x2+4x+6+m=-2(x-1)2+8+m.当x∈[-1,0]时,g(x)min=m,因为g(x)≥4在[-1,0]上恒成立,所以m≥4,故选B.6.(2021·南通模拟)已知幂函数y=mxn(m,n∈R)的图象经过点(4,2),则m-n=________.解析:函数y=mxn(m,n∈R)为幂函数,则m=1;又函数y=xn的图象经过点(4,2),则4n=2,解得n=.所以m-n=1-=.答案:7.二次函数y=ax2+bx+c(a≠0)的图象如图所示,确定下列各式的正负:b________0,ac________0,a-b+c________0.(填“>”“<”或“=”)解析:因为a<0,->0,c>0,所以b>0,ac<0.设y=f(x)=ax2+bx+c,则a-b+c=f(-1)<0.答案:> < <8.如果函数f(x)=x2-ax-a在区间[0,2]上的最大值为为1,那么实数a=________.解析:因为函数f(x)=x2-ax-a的图象为开口向上的抛物线,所以函数的最大值在区间的端点取得.因为f(0)=-a,f(2)=4-3a,所以或解得a= 1.答案:19.已知函数f(x)=x2+2ax+2,x∈.(1)当a=-1时,求函数f(x)的最大值和最小值;(2)求实数a的取值范围,使y=f(x)在区间[-5,5]上是单调函数.解:(1)当a=-1时,f(x)=x2-2x+2=(x-1)2+1,x∈[-5,5],所以当x=1时,f(x)取得最小值1;当x=-5时,f(x)取得最大值37.(2)函数f(x)=(x+a)2+2-a2的图象的对称轴为直线x=-a,因为y=f(x)在区间[-5,5]上是单调函数,所以-a≤-5或-a≥5,即a≤-5或a≥5.故实数a的取值范围是(-∞,-5]∪[5,+∞).10.(2021·山西平遥中学第一次月考)已知二次函数f(x)满足f(x)=f(-4-x),f(0)=3,若x1,x2是f(x)的两个零点,且|x1-x2|=2.(1)求f(x)的解析式;(2)若x>0,求g(x)=的最大值.解:(1)因为二次函数满足f(x)=f(-4-x),所以f(x)的图象的对称轴为直线x=-2.因为x1,x2是f(x)的两个零点,且|x1-x2|=2.所以或设f(x)=a(x+3)(x+1)(a≠0).由f(0)=3a=3得a=1,所以f(x)=x2+4x+3.(2)由(1)得g(x)===(x>0), 因为x>0,所以≤=1-,当且仅当x=,即x=时等号成立.所以g(x)的最大值是1-.[B级 综合练]11.(多选)设函数f(x)=ax2+bx+c(a≠0),对任意实数t都有f(4+t)=f(-t)成立,则在函数值f(-1),f(1),f(2),f(5)中,最小的可能是(  )A.f(-1)B.f(1)C.f(2)D.f(5)解析:选ACD.因为对任意实数t都有f(4+t)=f(-t)成立,所以函数f(x)=ax2+bx+c(a≠0)的对称轴是x=2.当a>0时,函数值f(-1),f(1),f(2),f(5)中,最小的是f(2);当a<0时,函数值f(-1),f(1),f(2),f(5)中,最小的是f(-1)和f(5).故选ACD.12.函数f(x)=(m2-m-1)xm2+m-3是幂函数,对任意x1,x2∈(0,+∞),且x1≠x2,满足>0,若a,b∈R,且f(a)+f(b)的值为负值,则下列结论可能成立的是(  )A.a+b>0,ab<0B.a+b>0,ab>0C.a+b<0,ab<0D.以上都可能解析:选C.由于函数f(x)为幂函数,故m2-m-1=1,解得m=-1或m=2.当m=-1时,f(x)=,当m=2时,f(x)=x3.由于“对任意x1,x2∈(0,+∞),且x1≠x2,满足>0”,故函数在(0,+∞)上为增函数,故f(x)=x3.由于f(-x)=-f(x),故函数是单调递增的奇函数.由f(a)+f(b)<0可知f(a)<-f(b)=f(-b),所以a<-b,即b<-a,所以a+b<0.当a=0时,b<0,ab=0;当a>0时, b<0,ab<0;当a<0时,ab<0(0<b<-a),ab=0(b=0),ab>0(b<0)均有可能成立.故选C.13.已知函数f(x)=x2+(2a-1)x-3.(1)当a=2,x∈[-2,3]时,求函数f(x)的值域;(2)若函数f(x)在[-1,3]上的最大值为1,求实数a的值.解:(1)当a=2时,f(x)=x2+3x-3,x∈[-2,3],对称轴为x=-∈[-2,3],所以f(x)min=f=--3=-,f(x)max=f(3)=15,所以函数f(x)在[-2,3]上的值域为.(2)对称轴为x=-.①当-≤1,即a≥-时,f(x)max=f(3)=6a+3,所以6a+3=1,即a=-满足题意;②当->1,即a<-时,f(x)max=f(-1)=-2a-1,所以-2a-1=1,即a=-1满足题意.综上可知,实数a的值为-或-1.14.已知函数f(x)=x2-2ax+5(a>1). (1)若函数f(x)的定义域和值域均为[1,a],求实数a的值;(2)若f(x)在区间(-∞,2]上是减函数,且对任意的x1,x2∈[1,a+1],总有|f(x1)-f(x2)|≤4,求实数a的取值范围.解:(1)因为f(x)=x2-2ax+5在(-∞,a]上为减函数,所以f(x)=x2-2ax+5(a>1)在[1,a]上单调递减,即f(x)max=f(1)=a,f(x)min=f(a)=1,所以a=2或a=-2(舍去).即实数a的值为2.(2)因为f(x)在(-∞,2]上是减函数,所以a≥2.所以f(x)在[1,a]上单调递减,在[a,a+1]上单调递增,又函数f(x)的对称轴为直线x=a,所以f(x)min=f(a)=5-a2,f(x)max=max{f(1),f(a+1)},又f(1)-f(a+1)=6-2a-(6-a2)=a(a-2)≥0,所以f(x)max=f(1)=6-2a.因为对任意的x1,x2∈[1,a+1],总有|f(x1)-f(x2)|≤4,所以f(x)max-f(x)min≤4,即6-2a-(5-a2)≤4,解得-1≤a≤3.又a≥2,所以2≤a≤3.即实数a的取值范围为[2,3][C级 创新练]15.(多选)已知函数f(x)=2x,g(x)=x2-ax,对于不相等的实数x1,x2,设m=,n=,现有如下说法,其中正确的是(  )A.对于不相等的实数x1,x2,都有m>0B.对于任意实数a及不相等的实数x1,x2,都有n>0C.对于任意实数a及不相等的实数x1,x2,都有m=nD.存在实数a,对任意不相等的实数x1,x2,都有m=n解析:选AD.任取x1≠x2,则m===2>0,A正确; 由二次函数的单调性可得g(x)在上单调递减,在上单调递增,可取x1=0,x2=a,则n====0,B错误;m=2,n====x1+x2-a,则m=n不恒成立,C错误;m=2,n=x1+x2-a,若m=n,则x1+x2-a=2,只需x1+x2=a+2即可,D正确.16.定义:如果在函数y=f(x)定义域内的给定区间[a,b]上存在x0(a<x0<b),满足f(x0)=,则称函数y=f(x)是[a,b]上的“平均值函数”,x0是它的一个均值点,如y=x4是[-1,1]上的平均值函数,0就是它的均值点.现有函数f(x)=-x2+mx+1是[-1,1]上的平均值函数,则实数m的取值范围是________.解析:因为函数f(x)=-x2+mx+1是[-1,1]上的平均值函数,设x0为均值点,所以=m=f(x0),即关于x0的方程-x+mx0+1=m在(-1,1)内有实数根,解方程得x0=1或x0=m-1.所以必有-1<m-1<1,即0<m<2,所以实数m的取值范围是(0,2).答案:(0,2)

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2021-09-20 19:00:05 页数:8
价格:¥3 大小:100.87 KB
文章作者:随遇而安

推荐特供

MORE