首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
一轮复习
>
2024年高考数学一轮复习讲义(学生版)第8章 §8.6 双曲线
2024年高考数学一轮复习讲义(学生版)第8章 §8.6 双曲线
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/5
2
/5
剩余3页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
§8.6 双曲线考试要求 1.了解双曲线的定义、几何图形和标准方程.2.掌握双曲线的几何性质(范围、对称性、顶点、渐近线、离心率).3.了解双曲线的简单应用.知识梳理1.双曲线的定义把平面内与两个定点F1,F2的距离的差的等于非零常数(|F1F2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的,两焦点间的距离叫做双曲线的.2.双曲线的标准方程和简单几何性质标准方程-=1(a>0,b>0)-=1(a>0,b>0)图形性质焦点焦距范围或,y∈Ry≤-a或y≥a,x∈R对称性对称轴:;对称中心:______顶点轴实轴:线段,长:;虚轴:线段B1B2,长:,实半轴长:,虚半轴长:_____渐近线y=±xy=±x离心率e=∈_________a,b,c的关系c2=(c>a>0,c>b>0)常用结论1.双曲线的焦点到其渐近线的距离为b.2.若P是双曲线右支上一点,F1,F2分别为双曲线的左、右焦点,则|PF1|min=a+c,|PF2|min=c-a.5 3.同支的焦点弦中最短的为通径(过焦点且垂直于实轴的弦),其长为.4.若P是双曲线上不同于实轴两端点的任意一点,F1,F2分别为双曲线的左、右焦点,则=,其中θ为∠F1PF2.5.与双曲线-=1(a>0,b>0)有共同渐近线的方程可表示为-=t(t≠0).思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内到点F1(0,4),F2(0,-4)的距离之差的绝对值等于8的点的轨迹是双曲线.( )(2)方程-=1(mn>0)表示焦点在x轴上的双曲线.( )(3)双曲线-=1(m>0,n>0)的渐近线方程是±=0.( )(4)等轴双曲线的渐近线互相垂直,离心率等于.( )教材改编题1.已知曲线C的方程为+=1(k∈R),若曲线C是焦点在y轴上的双曲线,则实数k的取值范围是( )A.-1<k<5B.k>5C.k<-1D.k≠-1或52.双曲线2y2-x2=1的渐近线方程是( )A.y=±xB.y=±2xC.y=±xD.y=±x3.设P是双曲线-=1上一点,F1,F2分别是双曲线的左、右焦点,若|PF1|=9,则|PF2|=________.题型一 双曲线的定义及应用例1(1)(2022·洛阳模拟)在平面直角坐标系中,已知△ABC的顶点A(-3,0),B(3,0),其内切圆圆心在直线x=2上,则顶点C的轨迹方程为( )A.-=1(x>2)5 B.-=1(x>3)C.+=1(0<x<2)D.+=1(0<x<3)(2)已知F1,F2为双曲线C:x2-y2=2的左、右焦点,点P在C上,∠F1PF2=60°,则△F1PF2的面积为__________.听课记录:______________________________________________________________________________________________________________________________________思维升华 在“焦点三角形”中,常利用正弦定理、余弦定理,结合||PF1|-|PF2||=2a,运用平方的方法,建立与|PF1|·|PF2|的联系.跟踪训练1 (1)已知圆C1:(x+3)2+y2=1,C2:(x-3)2+y2=9,动圆M同时与圆C1和圆C2相外切,则动圆圆心M的轨迹方程为( )A.x2-=1B.-y2=1C.x2-=1(x≤-1)D.x2-=1(x≥1)(2)(2022·荆州模拟)已知双曲线C:-=1的左、右焦点分别是F1,F2,点P是C的右支上的一点(不是顶点),过F2作∠F1PF2的角平分线的垂线,垂足是M,O是原点,则|MO|=________.题型二 双曲线的标准方程例2 (1)(2021·北京)双曲线C:-=1(a>0,b>0)过点(,),且离心率为2,则该双曲线的标准方程为( )A.x2-=1B.-y2=1C.x2-=1D.-y2=1(2)(2023·连云港模拟)在平面直角坐标系中,已知双曲线-=1(a>0,b>0)的右焦点为F,点A在双曲线的渐近线上,△OAF是边长为2的等边三角形,则双曲线的标准方程为( )A.-=1B.-=1C.-y2=1D.x2-=15 听课记录:______________________________________________________________________________________________________________________________________思维升华 求双曲线的标准方程的方法(1)定义法:由题目条件判断出动点轨迹是双曲线,确定2a,2b或2c,从而求出a2,b2.(2)待定系数法:“先定型,再定量”,如果焦点位置不好确定,可将双曲线方程设为-=λ(λ≠0),再根据条件求λ的值.跟踪训练2 (1)已知双曲线-=1(a>0,b>0)的离心率为2,左焦点到渐近线的距离为2,则双曲线的方程为( )A.-=1B.-=1C.-=1D.-=1(2)(2023·廊坊模拟)江西景德镇青花瓷始创于元代,到明清两代达到了顶峰,它蓝白相映怡然成趣,晶莹明快,美观隽永.现有某青花瓷花瓶的外形可看成是焦点在x轴上的双曲线的一部分绕其虚轴旋转所形成的曲面,如图所示,若该花瓶的瓶身最小的直径是4,瓶口和底面的直径都是8,瓶高是6,则该双曲线的标准方程是( )A.-=1B.-y2=1C.-=1D.-=1题型三 双曲线的几何性质命题点1 渐近线例3 (1)(2022·北京)已知双曲线y2+=1的渐近线方程为y=±x,则m=________.(2)(2022·连云港模拟)若双曲线经过点(1,),其渐近线方程为y=±2x,则双曲线的方程是________.听课记录:______________________________________________________________________________________________________________________________________5 思维升华 (1)渐近线的求法:求双曲线-=1(a>0,b>0)的渐近线的方法是令-=0,即得两渐近线方程±=0.(2)在双曲线的几何性质中,重点是渐近线方程和离心率,在双曲线-=1(a>0,b>0)中,离心率e与双曲线的渐近线的斜率k=±,满足关系式e2=1+k2.命题点2 离心率例4 (1)(2021·全国甲卷)已知F1,F2是双曲线C的两个焦点,P为C上一点,且∠F1PF2=60°,|PF1|=3|PF2|,则C的离心率为( )A.B.C.D.(2)(2022·全国甲卷)记双曲线C:-=1(a>0,b>0)的离心率为e,写出满足条件“直线y=2x与C无公共点”的e的一个值________.听课记录:______________________________________________________________________________________________________________________________________思维升华 求双曲线的离心率时,将提供的双曲线的几何关系转化为关于双曲线基本量a,b,c的方程或不等式,利用c2=a2+b2和e=转化为关于e的方程(或不等式),通过解方程(或不等式)求得离心率的值(或范围).跟踪训练3 (1)(多选)(2023·聊城模拟)已知双曲线C:+=1(0<k<1),则下列结论正确的是( )A.双曲线C的焦点在x轴上B.双曲线C的焦距等于4C.双曲线C的焦点到其渐近线的距离等于D.双曲线C的离心率的取值范围为(2)(2022·怀化模拟)已知F是双曲线C:-=1(a>0,b>0)的右焦点,过点F的直线l与双曲线C的一条渐近线垂直,垂足为A,且直线l与双曲线C的左支交于点B,若3|FA|=|AB|,则双曲线C的渐近线方程为________.5
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
【红对勾】(新课标)2023高考数学大一轮复习 8.6双曲线课时作业 理.DOC
【师说 高中全程复习构想】(新课标)2022届高考数学 8.6 双曲线练习
【世纪金榜】2022届高考数学总复习 课时提升作业(四十八) 8.6双曲线 文 新人教A版
数学一轮复习专题9.4 双曲线 (新教材新高考)(练)学生版
2024年高考数学一轮复习(新高考版) 第8章 §8.6 双曲线
2024年高考数学一轮复习讲义(学生版)第1章 §1.1 集 合
2024年高考数学一轮复习讲义(学生版)第5章 §5.5 复 数
2024年高考数学一轮复习讲义(学生版)第6章 §6.5 数列求和
2024年高考数学一轮复习讲义(学生版)第8章 §8.3 圆的方程
2024年高考数学一轮复习讲义(学生版)第8章 §8.5 椭 圆
文档下载
收藏
所属:
高考 - 一轮复习
发布时间:2024-09-13 06:20:02
页数:5
价格:¥1
大小:316.71 KB
文章作者:180****8757
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划