首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
一轮复习
>
2024年高考数学一轮复习(新高考版) 第6章 §6.5 数列求和
2024年高考数学一轮复习(新高考版) 第6章 §6.5 数列求和
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/13
2
/13
剩余11页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
§6.5 数列求和考试要求 1.熟练掌握等差、等比数列的前n项和公式.2.掌握非等差数列、非等比数列求和的几种常用方法.知识梳理数列求和的几种常用方法1.公式法直接利用等差数列、等比数列的前n项和公式求和.(1)等差数列的前n项和公式:Sn==na1+d.(2)等比数列的前n项和公式:Sn=.2.分组求和法与并项求和法(1)分组求和法若一个数列是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后相加减.(2)并项求和法一个数列的前n项和中,可两两结合求解,则称之为并项求和.形如an=(-1)nf(n)类型,可采用两项合并求解.3.错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.4.裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.常见的裂项技巧(1)=-.(2)=.(3)=.13 (4)=-.(5)=.常用结论常用求和公式(1)1+2+3+4+…+n=.(2)1+3+5+7+…+(2n-1)=n2.(3)12+22+32+…+n2=.(4)13+23+33+…+n3=2.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果数列{an}为等比数列,且公比不等于1,则其前n项和Sn=.( √ )(2)求Sn=a+2a2+3a3+…+nan时,只要把上式等号两边同时乘a即可根据错位相减法求得.( × )(3)已知等差数列{an}的公差为d,则有=.( × )(4)sin21°+sin22°+sin23°+…+sin288°+sin289°=44.5.( √ )教材改编题1.已知函数f(n)=且an=f(n)+f(n+1),则a1+a2+a3+…+a100等于( )A.0B.100C.-100D.10200答案 B解析 由题意,得a1+a2+a3+…+a100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012=-(1+2)+(3+2)-(4+3)+…-(99+100)+(101+100)=-(1+2+…+99+100)+(2+3+…+100+101)=-50×101+50×103=100.2.数列{an}的前n项和为Sn.若an=,则S5等于( )A.1B.C.D.13 答案 B解析 因为an==-,所以S5=a1+a2+…+a5=1-+-+…-=.3.Sn=+++…+等于( )A.B.C.D.答案 B解析 由Sn=+++…+,①得Sn=++…++,②①-②得,Sn=+++…+-=-,∴Sn=.题型一 分组求和与并项求和例1 (2023·菏泽模拟)已知数列{an}中,a1=1,它的前n项和Sn满足2Sn+an+1=2n+1-1.(1)证明:数列为等比数列;(2)求S1+S2+S3+…+S2n.(1)证明 由2Sn+an+1=2n+1-1(n≥1),①得2Sn-1+an=2n-1(n≥2),②由①-②得an+an+1=2n(n≥2),得an+1=-an+2n⇒an+1-=-(n≥2),又当n=1时,由①得a2=1⇒a2-=-,所以对任意的n∈N*,都有an+1-=-,13 故是以为首项,-1为公比的等比数列.(2)解 由(1)知an-=⇒an=,所以an+1=,代入①得Sn=--,所以S1+S2+…+S2n=(22+23+…+22n+1)-[(-1)+(-1)2+…+(-1)2n]-=×-0-n=.延伸探究 在本例(2)中,如何求S1+S2+S3+…+Sn?解 当n为偶数时,S1+S2+S3+…+Sn=(22+23+…+2n+1)-[(-1)+(-1)2+…+(-1)n-1+(-1)n]-=×-=-=.当n为奇数时,S1+S2+S3+…+Sn=(S1+S2+S3+…+Sn+Sn+1)-Sn+1=-=.综上,S1+S2+…+Sn=思维升华 (1)若数列{cn}的通项公式为cn=an±bn,且{an},{bn}为等差或等比数列,可采用分组求和法求数列{cn}的前n项和.(2)若数列{cn}的通项公式为cn=其中数列{an},{bn}是等比数列或等差数列,可采用分组求和法求{cn}的前n项和.跟踪训练1 记数列{an}的前n项和为Sn,已知Sn=2an-2n+1.(1)求数列{an}的通项公式;(2)记bn=(-1)n·log2,求数列{bn}的前n项和Tn.解 (1)当n=1时,由Sn=2an-2n+1,可得a1=S1=2a1-2+1,即有a1=1.当n≥2时,an=Sn-Sn-1=2an-2n+1-2an-1+2(n-1)-1,13 即an=2an-1+2,可得an+2=2(an-1+2),显然an-1+2≠0.所以数列{an+2}是首项为3,公比为2的等比数列,则an+2=3·2n-1,即有an=3·2n-1-2.(2)bn=(-1)n·log2=(-1)n·log22n=(-1)n·n.当n为偶数时,Tn=-1+2-3+4-…-(n-1)+n=(-1+2)+(-3+4)+…+[-(n-1)+n]=.当n为奇数时,Tn=-1+2-3+4-…+(n-1)-n=-n==-.综上,Tn=题型二 错位相减法求和例2 (2021·浙江)已知数列{an}的前n项和为Sn,a1=-,且4Sn+1=3Sn-9(n∈N*).(1)求数列{an}的通项公式;(2)设数列{bn}满足3bn+(n-4)an=0(n∈N*),记{bn}的前n项和为Tn.若Tn≤λbn,对任意n∈N*恒成立,求实数λ的取值范围.解 (1)因为4Sn+1=3Sn-9,所以当n≥2时,4Sn=3Sn-1-9,两式相减可得4an+1=3an,即=.当n=1时,4S2=4=--9,解得a2=-,所以=.所以数列{an}是首项为-,公比为的等比数列,所以an=-×n-1=-.(2)因为3bn+(n-4)an=0,13 所以bn=(n-4)×n.所以Tn=-3×-2×2-1×3+0×4+…+(n-4)×n,①且Tn=-3×2-2×3-1×4+0×5+…+(n-5)×n+(n-4)×n+1,②①-②得Tn=-3×+2+3+…+n-(n-4)×n+1=-+-(n-4)×n+1=-n×n+1,所以Tn=-4n×n+1.因为Tn≤λbn对任意n∈N*恒成立,所以-4n×n+1≤λ恒成立,即-3n≤λ(n-4)恒成立,当n<4时,λ≤=-3-,此时λ≤1;当n=4时,-12≤0恒成立,当n>4时,λ≥=-3-,此时λ≥-3.所以-3≤λ≤1.思维升华 (1)如果数列{an}是等差数列,{bn}是等比数列,求数列{an·bn}的前n项和时,常采用错位相减法.(2)错位相减法求和时,应注意:①在写出“Sn”与“qSn”的表达式时应特别注意将两式“错项对齐”,以便于下一步准确地写出“Sn-qSn”的表达式.②应用等比数列求和公式时必须注意公比q是否等于1,如果q=1,应用公式Sn=na1.跟踪训练2 (2023·重庆模拟)在①a1=1,nan+1=(n+1)·an,②++…+=2n+1-2这两个条件中任选一个,补充在下面的问题中并作答.问题:在数列{an}中,已知________.13 (1)求{an}的通项公式;(2)若bn=,求数列{bn}的前n项和Sn.注:如果选择多个条件分别解答,按第一个解答计分.解 (1)选择①,因为nan+1=(n+1)an,所以=.所以是常数列.又=1,所以=1,故an=n.选择②,因为++…+=2n+1-2,所以当n=1时,=22-2=2,解得a1=1,当n≥2时,=2n+1-2n=2n,所以an=n.又a1=1,所以an=n.(2)由(1)可知bn=,则Sn=++…+,①Sn=++…++.②两式相减得Sn=+++…+-=+-=-.故Sn=1-.题型三 裂项相消法求和例3 (10分)(2022·新高考全国Ⅰ)记Sn为数列{an}的前n项和,已知a1=1,是公差为的等差数列.(1)求{an}的通项公式;[切入点:求数列的通项公式](2)证明:++…+<2.[关键点:把拆成两项相减]13 思维升华 裂项相消法的原则及规律(1)裂项原则一般是前面裂几项,后面就裂几项,直到发现被消去项的规律为止.(2)消项规律消项后前面剩几项,后面就剩几项,前面剩第几项,后面就剩倒数第几项.13 跟踪训练3 (2022·湛江模拟)已知数列{an}是等比数列,且8a3=a6,a2+a5=36.(1)求数列{an}的通项公式;(2)设bn=,求数列{bn}的前n项和Tn,并证明:Tn<.解 (1)由题意,设等比数列{an}的公比为q,则q3==8,即q=2,∵a2+a5=36,∴a1q+a1q4=36,即2a1+16a1=36,解得a1=2,∴an=2·2n-1=2n,n∈N*.(2)由(1)可得,bn===-,故Tn=b1+b2+…+bn=-+-+…+-=-=-<,∴不等式Tn<对n∈N*恒成立.课时精练1.(2022·杭州模拟)已知单调递增的等差数列{an}的前n项和为Sn,且S4=20,a2,a4,a8成等比数列.(1)求数列{an}的通项公式;(2)若bn=2an+1-3n+2,求数列{bn}的前n项和Tn.解 (1)设数列{an}的公差为d(d>0),由题意得即解得或(舍),所以an=2+(n-1)·2=2n.(2)由(1)得,an=2n,所以bn=4(n+1)-3n+2,13 所以Tn=4×2-33+4×3-34+…+4(n+1)-3n+2=4[2+3+…+(n+1)]-(33+34+…+3n+2)=4n·-=2n2+6n+-.2.(2023·宁波模拟)已知数列{an}满足an+1an-2n2(an+1-an)+1=0,且a1=1.(1)求出a2,a3的值,猜想数列{an}的通项公式;(2)设数列{an}的前n项和为Sn,且bn=,求数列{bn}的前n项和Tn.解 (1)由已知得,当n=1时,a2a1-2(a2-a1)+1=0,又a1=1,代入上式,解得a2=3,同理可求得a3=5.猜想an=2n-1.(2)由(1)可知an=2n-1,经检验符合题意,所以Sn=n2,则bn===+,所以Tn=++…+=+=.3.(2023·吕梁模拟)已知正项数列{an}的前n项和为Sn,且满足4Sn=(an+1)2.(1)求证:数列{an}是等差数列;(2)设bn=2n,求数列{an·bn}的前n项和Tn.(1)证明 在4Sn=(an+1)2中,令n=1,可得a1=1,因为4Sn=(an+1)2,①所以当n≥2时,4Sn-1=(an-1+1)2,②①-②得,4an=(an+1)2-(an-1+1)2,整理得(an+an-1)(an-an-1-2)=0,因为an>0,所以an-an-1=2(n≥2),所以数列{an}是以1为首项,2为公差的等差数列.(2)解 由(1)得an=2n-1,所以an·bn=(2n-1)·2n,所以Tn=1×21+3×22+5×23+…+(2n-1)·2n,2Tn=1×22+3×23+…+(2n-3)·2n+(2n-1)·2n+1,两式相减得,-Tn=2+2×(22+23+…+2n)-(2n-1)·2n+1=-6+(3-2n)·2n+1,所以Tn=6+(2n-3)·2n+1.4.(2022·淄博模拟)已知数列{an}满足a1=2,且an+1=(n∈N*),设bn=a2n-1.13 (1)证明:数列{bn+2}为等比数列,并求出{bn}的通项公式;(2)求数列{an}的前2n项和.解 (1)由题意知,bn+1=a2n+1=2a2n=2(a2n-1+1)=2bn+2,所以=2,又b1+2=a1+2=4,所以{bn+2}是首项为4,公比为2的等比数列,则bn+2=4·2n-1=2n+1,所以bn=2n+1-2.(2)数列{an}的前2n项和为S2n=a1+a2+a3+…+a2n=(a1+a3+a5+…+a2n-1)+(a2+a4+…+a2n)=(a1+a3+a5+…+a2n-1)+(a1+a3+…+a2n-1+n)=2(a1+a3+a5+…+a2n-1)+n=2(b1+b2+…+bn)+n=2×(22+23+…+2n+1-2n)+n=2×-3n=2n+3-3n-8.5.(2023·蚌埠模拟)给出以下条件:①a2,a3,a4+1成等比数列;②S1+1,S2,S3成等比数列;③Sn=(n∈N*).从中任选一个,补充在下面的横线上,再解答.已知递增等差数列{an}的前n项和为Sn,且a1=2,________.(1)求数列{an}的通项公式;(2)若是以2为首项,2为公比的等比数列,求数列{bn}的前n项的和Tn.注:如果选择多个条件分别解答,按第一个解答计分.解 (1)设数列{an}的公差为d,则d>0,选择条件①:因为a2,a3,a4+1成等比数列,所以a=a2·(a4+1),所以(2+2d)2=(2+d)·(2+3d+1),化简得d2-d-2=0,解得d=2或d=-1(舍),所以数列{an}的通项公式为an=2+(n-1)×2=2n.选择条件②:因为S1+1,S2,S3成等比数列,所以S=(S1+1)·S3,所以(2×2+d)2=(2+1)·(3×2+3d),化简得d2-d-2=0,解得d=2或d=-1(舍),13 所以数列{an}的通项公式为an=2+(n-1)×2=2n.选择条件③:因为Sn=(n∈N*),所以当n≥2时,Sn-1=,两式相减得,an=an(an+1-an-1),因为an≠0,所以an+1-an-1=4,即2d=4,所以d=2,所以数列{an}的通项公式为an=2+(n-1)×2=2n.(2)因为是以2为首项,2为公比的等比数列,所以=2·2n-1=2n,所以bn=2n·2n,所以Tn=2·21+4·22+6·23+…+2n·2n,2Tn=2·22+4·23+6·24+…+(2n-2)·2n+2n·2n+1,两式相减得,-Tn=2·21+2·22+2·23+2·24+…+2·2n-2n·2n+1=2×-2n·2n+1=(1-n)2n+2-4,所以Tn=(n-1)2n+2+4.6.(2023·哈尔滨模拟)设正项数列{an}的前n项和为Sn,已知2Sn=a+an.(1)求数列{an}的通项公式;(2)记bn=acos ,Tn是数列{bn}的前n项和,求T3n.解 (1)由2Sn=a+an,当n≥2时,2Sn-1=a+an-1,两式相减得,2an=a-a+an-an-1,整理可得(an+an-1)(an-an-1-1)=0,因为an>0,所以an-an-1-1=0,即an-an-1=1(n≥2),在2Sn=a+an中,令n=1,则a1=1,所以数列{an}是首项为1,公差为1的等差数列,故an=n.(2)bn=acos =n2cos ,13 设ck=b3k-2+b3k-1+b3k=(3k-2)2·cos+(3k-1)2cos+(3k)2·cos2kπ=-(3k-2)2+(3k-1)2+(3k)2=9k-,所以T3n=c1+c2+c3+…+cn=+++…+=9(1+2+3+…+n)-n=9×-n=.13
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
2022年新教材高考数学一轮复习第5章数列4数列求和课件(人教版)
2022年高考数学一轮复习第6章数列4数列求和课件(人教A版)
2023版新高考数学一轮总复习第6章第4讲数列求和课件
高考数学一轮复习第5章数列第4讲数列求和知能训练轻松闯关理北师大版
高考数学一轮复习第5章数列第4讲数列求和知能训练轻松闯关文北师大版
2024届高考数学一轮复习(新教材人教A版强基版)第六章数列6.5数列求和(一)课件
第六章 §6.5 数列求和
第六章 §6.5 数列求和
2023年新高考一轮复习讲义第37讲 数列求和(解析版)
2023年新高考一轮复习讲义第37讲 数列求和(原卷版)
文档下载
收藏
所属:
高考 - 一轮复习
发布时间:2024-09-11 18:00:01
页数:13
价格:¥1
大小:928.21 KB
文章作者:180****8757
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划