首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
一轮复习
>
2024年高考数学一轮复习(新高考版) 第6章 §6.2 等差数列
2024年高考数学一轮复习(新高考版) 第6章 §6.2 等差数列
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/13
2
/13
剩余11页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
§6.2 等差数列考试要求 1.理解等差数列的概念.2.掌握等差数列的通项公式与前n项和公式.3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题.4.了解等差数列与一次函数、二次函数的关系.知识梳理1.等差数列的有关概念(1)等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示,定义表达式为an-an-1=d(常数)(n≥2,n∈N*).(2)等差中项由三个数a,A,b组成等差数列,则A叫做a与b的等差中项,且有2A=a+b.2.等差数列的有关公式(1)通项公式:an=a1+(n-1)d.(2)前n项和公式:Sn=na1+d或Sn=.3.等差数列的常用性质(1)通项公式的推广:an=am+(n-m)d(n,m∈N*).(2)若{an}为等差数列,且k+l=m+n(k,l,m,n∈N*),则ak+al=am+an.(3)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,m∈N*)是公差为md的等差数列.(4)数列Sm,S2m-Sm,S3m-S2m,…也是等差数列.(5)S2n-1=(2n-1)an.(6)等差数列{an}的前n项和为Sn,为等差数列.常用结论1.已知数列{an}的通项公式是an=pn+q(其中p,q为常数),则数列{an}一定是等差数列,且公差为p.2.在等差数列{an}中,a1>0,d<0,则Sn存在最大值;若a1<0,d>0,则Sn存在最小值.3.等差数列{an}的单调性:当d>0时,{an}是递增数列;当d<0时,{an}是递减数列;当13 d=0时,{an}是常数列.4.数列{an}是等差数列⇔Sn=An2+Bn(A,B为常数).这里公差d=2A.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一个数列从第2项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( × )(2)数列{an}为等差数列的充要条件是对任意n∈N*,都有2an+1=an+an+2.( √ )(3)在等差数列{an}中,若am+an=ap+aq,则m+n=p+q.( × )(4)若无穷等差数列{an}的公差d>0,则其前n项和Sn不存在最大值.( √ )教材改编题1.在等差数列{an}中,已知a5=11,a8=5,则a10等于( )A.-2B.-1C.1D.2答案 C解析 设等差数列{an}的公差为d,由题意得解得∴an=-2n+21.∴a10=-2×10+21=1.2.设等差数列{an}的前n项和为Sn,若S4=8,S8=20,则a9+a10+a11+a12等于( )A.12B.8C.20D.16答案 D解析 等差数列{an}中,S4,S8-S4,S12-S8仍为等差数列,即8,20-8,a9+a10+a11+a12为等差数列,所以a9+a10+a11+a12=16.3.设等差数列{an}的前n项和为Sn.若a1=10,S4=28,则Sn的最大值为________.答案 30解析 由a1=10,S4=4a1+6d=28,解得d=-2,所以Sn=na1+d=-n2+11n.当n=5或6时,Sn最大,最大值为30.题型一 等差数列基本量的运算例1 (1)(2023·开封模拟)已知公差为1的等差数列{an}中,a=a3a6,若该数列的前n项和Sn=0,则n等于( )A.10B.11C.12D.13答案 D解析 由题意知(a1+4)2=(a1+2)(a1+5),na1+=0,解得a1=-6,n=13.(2)(2020·全国Ⅱ)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.13 上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块.下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A.3699块B.3474块C.3402块D.3339块答案 C解析 设每一层有n环,由题意可知从内到外每环之间构成d=9,a1=9的等差数列.由等差数列的性质知Sn,S2n-Sn,S3n-S2n成等差数列,且(S3n-S2n)-(S2n-Sn)=n2d,则9n2=729,得n=9,则三层共有扇面形石板S3n=S27=27×9+×9=3402(块).思维升华 (1)等差数列的通项公式及前n项和公式共涉及五个量a1,n,d,an,Sn,知道其中三个就能求出另外两个(简称“知三求二”).(2)确定等差数列的关键是求出两个最基本的量,即首项a1和公差d.跟踪训练1 (1)《周髀算经》有这样一个问题:从冬至日起,依次为小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影长之和为三丈一尺五寸,前九个节气日影长之和为八丈五尺五寸,问芒种日影长为(一丈=十尺=一百寸)( )A.一尺五寸B.二尺五寸C.三尺五寸D.四尺五寸答案 B解析 由题意知,从冬至日起,依次为小寒、大寒等十二个节气日影长构成一个等差数列{an},设公差为d,∵冬至、立春、春分日影长之和为三丈一尺五寸,前九个节气日影长之和为八丈五尺五寸,∴解得∴芒种日影长为a12=a1+11d=135-11×10=25(寸)=2尺5寸.(2)数列是等差数列,且a1=1,a3=-,那么a2024=________.13 答案 -解析 设等差数列的公差为d,因为a1=1,a3=-,所以=1,=3.所以3=1+2d,解得d=1.所以=1+n-1=n,所以an=-1.所以a2024=-1=-=-.题型二 等差数列的判定与证明例2 (2021·全国甲卷)已知数列{an}的各项均为正数,记Sn为{an}的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{an}是等差数列;②数列{}是等差数列;③a2=3a1.注:若选择不同的组合分别解答,则按第一个解答计分.解 ①③⇒②.已知{an}是等差数列,a2=3a1.设数列{an}的公差为d,则a2=3a1=a1+d,得d=2a1,所以Sn=na1+d=n2a1.因为数列{an}的各项均为正数,所以=n,所以-=(n+1)-n=(常数),所以数列{}是等差数列.①②⇒③.已知{an}是等差数列,{}是等差数列.设数列{an}的公差为d,则Sn=na1+d=n2d+n.因为数列{}是等差数列,所以数列{}的通项公式是关于n的一次函数,则a1-=0,即d=2a1,所以a2=a1+d=3a1.②③⇒①.已知数列{}是等差数列,a2=3a1,所以S1=a1,S2=a1+a2=4a1.设数列{}的公差为d,d>0,则-=-=d,得a1=d2,所以=+(n-1)d=nd,13 所以Sn=n2d2,所以an=Sn-Sn-1=n2d2-(n-1)2d2=2d2n-d2(n≥2),是关于n的一次函数,且a1=d2满足上式,所以数列{an}是等差数列.思维升华 判断数列{an}是等差数列的常用方法(1)定义法.(2)等差中项法.(3)通项公式法.(4)前n项和公式法.跟踪训练2 已知数列{an}的各项都是正数,n∈N*.(1)若{an}是等差数列,公差为d,且bn是an和an+1的等比中项,设cn=b-b,n∈N*,求证:数列{cn}是等差数列;(2)若a+a+a+…+a=S,Sn为数列{an}的前n项和,求数列{an}的通项公式.(1)证明 由题意得b=anan+1,则cn=b-b=an+1an+2-anan+1=2dan+1,因此cn+1-cn=2d(an+2-an+1)=2d2(常数),∴{cn}是等差数列.(2)解 当n=1时,a=a,∵a1>0,∴a1=1.a+a+a+…+a=S,①当n≥2时,a+a+a+…+a=S,②①-②得,a=S-S=(Sn-Sn-1)(Sn+Sn-1).∵an>0,∴a=Sn+Sn-1=2Sn-an,③∵a1=1也符合上式,∴当n≥2时,a=2Sn-1-an-1,④③-④得a-a=2(Sn-Sn-1)-an+an-1=2an-an+an-1=an+an-1,∵an+an-1>0,∴an-an-1=1,∴数列{an}是首项为1,公差为1的等差数列,可得an=n.题型三 等差数列的性质命题点1 等差数列项的性质例3 (1)已知在等差数列{an}中,若a8=8且log2()=22,则S13等于( )A.40B.65C.80D.40+log25答案 B解析 log2()=log2+log2+…+log2=a1+a2+…+a11=11a6=22,所以a6=2,则S13===65.(2)已知数列{an},{bn}都是等差数列,且a1=2,b1=-3,a7-b7=17,则a2024-b202413 的值为________.答案 4051解析 令cn=an-bn,因为{an},{bn}都是等差数列,所以{cn}也是等差数列.设数列{cn}的公差为d,由已知,得c1=a1-b1=5,c7=17,则5+6d=17,解得d=2.故a2024-b2024=c2024=5+2023×2=4051.思维升华 等差数列项的性质的关注点(1)在等差数列题目中,只要出现项的和问题,一般先考虑应用项的性质.(2)项的性质常与等差数列的前n项和公式Sn=相结合.跟踪训练3 (1)若等差数列{an}的前15项和S15=30,则2a5-a6-a10+a14等于( )A.2B.3C.4D.5答案 A解析 ∵S15=30,∴(a1+a15)=30,∴a1+a15=4,∴2a8=4,∴a8=2.∴2a5-a6-a10+a14=a4+a6-a6-a10+a14=a4-a10+a14=a10+a8-a10=a8=2.(2)(2023·保定模拟)已知等差数列{an}满足=-2,则下列结论一定成立的是( )A.=-1B.=-1C.=-1D.=-1答案 C解析 由=-2得a5≠0,2a5+a8=a4+a6+a8=3a6=0,所以a6=0,a3+a9=2a6=0,因为a5≠0,a6=0,所以a3≠0,=-1.命题点2 等差数列前n项和的性质例4 (1)设等差数列{an},{bn}的前n项和分别为Sn,Tn,若对任意的n∈N*,都有=,则+的值为( )A.B.C.D.13 答案 C解析 由题意可知b3+b13=b5+b11=b1+b15=2b8,∴+======.(2)已知等差数列{an}共有(2n+1)项,其中奇数项之和为290,偶数项之和为261,则an+1的值为( )A.30B.29C.28D.27答案 B解析 奇数项共有(n+1)项,其和为·(n+1)=·(n+1)=290,∴(n+1)an+1=290.偶数项共有n项,其和为·n=·n=nan+1=261,∴an+1=290-261=29.思维升华 等差数列前n项和的常用的性质是:在等差数列{an}中,数列Sm,S2m-Sm,S3m-S2m,…也是等差数列,且有S2n=n(a1+a2n)=…=n(an+an+1);S2n-1=(2n-1)an.跟踪训练4 (1)设等差数列{an}的前n项和为Sn,若S4=20,S5=30,am=40,则m等于( )A.6B.10C.20D.40答案 C解析 由S4=20,S5=30,得a5=S5-S4=10,由等差数列的性质,得S5=30=5a3,故a3=6,而a5-a3=10-6=4=2d,故d=2,am=40=a5+2(m-5),解得m=20.(2)已知Sn是等差数列{an}的前n项和,若a1=-2020,-=6,则S2023等于( )A.2023B.-2023C.4046D.-4046答案 C解析 ∵为等差数列,设公差为d′,则-=6d′=6,∴d′=1,首项为=-2020,∴=-2020+(2023-1)×1=2,∴S2023=2023×2=4046,故选C.13 课时精练1.首项为-21的等差数列从第8项起为正数,则公差d的取值范围是( )A.(3,+∞)B.C.D.答案 D解析 an=-21+(n-1)d,因为从第8项起为正数,所以a7=-21+6d≤0,a8=-21+7d>0,解得3<d≤.2.设Sn是等差数列{an}的前n项和,若S50-S47=12,则S97等于( )A.198B.388C.776D.2023答案 B解析 ∵S50-S47=a48+a49+a50=12,∴a49=4,∴S97==97a49=97×4=388.3.已知等差数列{an}的项数为奇数,其中所有奇数项之和为319,所有偶数项之和为290,则该数列的中间项为( )A.28B.29C.30D.31答案 B解析 设等差数列{an}共有2n+1项,则S奇=a1+a3+a5+…+a2n+1,S偶=a2+a4+a6+…+a2n,该数列的中间项为an+1,又S奇-S偶=a1+(a3-a2)+(a5-a4)+…+(a2n+1-a2n)=a1+d+d+…+d=a1+nd=an+1,所以an+1=S奇-S偶=319-290=29.4.天干地支纪年法,源于中国.中国自古便有十天干与十二地支.十天干即甲、乙、丙、丁、戊、己、庚、辛、壬、癸,十二地支即子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如说第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”,……,依此类推,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”“乙亥”,之后地支回到“子”重新开始,即“丙子”,……,依此类推.191113 年中国爆发推翻清朝专制帝制、建立共和政体的全国性革命,这一年是辛亥年,史称“辛亥革命”.1949年新中国成立,请推算新中国成立的年份为( )A.己丑年B.己酉年C.丙寅年D.甲寅年答案 A解析 根据题意可得,天干是以10为公差的等差数列,地支是以12为公差的等差数列,从1911年到1949年经过38年,且1911年为“辛亥”年,以1911年的天干和地支分别为首项,则38=3×10+8,则1949年的天干为己,38=12×3+2,则1949年的地支为丑,所以1949年为己丑年.5.设Sn为等差数列{an}的前n项和,若3a5=7a11,且a1>0.则使Sn<0的n的最小值为( )A.30B.31C.32D.33答案 B解析 根据题意,设等差数列{an}的公差为d,若3a5=7a11,且a1>0,则3(a1+4d)=7(a1+10d),变形可得4a1+58d=0,则a1=-d,所以Sn=na1+=-nd+=(n2-30n),因为a1=-d>0,所以d<0,若Sn<0,必有n2-30n>0,又由n∈N*,则n>30,故使Sn<0的n的最小值为31.6.(多选)在△ABC中,内角A,B,C所对的边分别为a,b,c,若,,依次成等差数列,则下列结论中不一定成立的是( )A.a,b,c依次成等差数列B.,,依次成等差数列C.a2,b2,c2依次成等差数列D.a3,b3,c3依次成等差数列答案 ABD解析 在△ABC中,若,,依次成等差数列,则=+,整理得=+,利用正弦定理和余弦定理得2·=+13 ,整理得2b2=a2+c2,即a2,b2,c2依次成等差数列,此时对等差数列a2,b2,c2的每一项取相同的运算得到数列a,b,c或,,或a3,b3,c3,这些数列都不一定是等差数列,除非a=b=c,但题目中未说明△ABC是等边三角形.7.(2022·全国乙卷)记Sn为等差数列{an}的前n项和.若2S3=3S2+6,则公差d=________.答案 2解析 由2S3=3S2+6,可得2(a1+a2+a3)=3(a1+a2)+6,化简得2a3=a1+a2+6,即2(a1+2d)=2a1+d+6,解得d=2.8.设Sn是等差数列{an}的前n项和,S10=16,S100-S90=24,则S100=________.答案 200解析 依题意,S10,S20-S10,S30-S20,…,S100-S90依次成等差数列,设该等差数列的公差为d.又S10=16,S100-S90=24,因此S100-S90=24=16+(10-1)d=16+9d,解得d=,因此S100=10S10+d=10×16+×=200.9.已知{an}是公差为d的等差数列,其前n项和为Sn,且a5=1,________.若存在正整数n,使得Sn有最小值.(1)求{an}的通项公式;(2)求Sn的最小值.从①a3=-1,②d=2,③d=-2这三个条件中选择符合题意的一个条件,补充在上面的问题中并作答.注:如果选择多个条件分别解答,则按第一个解答计分.解 选择①作为补充条件:(1)因为a5=1,a3=-1,所以d=1,所以an=1+(n-5)×1=n-4(n∈N*).(2)由(1)可知a1=-3,所以Sn==n(n-7).因为n∈N*,所以当n=3或4时,Sn取得最小值,且最小值为-6.故存在正整数n=3或4,使得Sn有最小值,且最小值为-6.选择②作为补充条件:(1)因为a5=1,d=2,所以an=1+(n-5)×2=2n-9(n∈N*).(2)由(1)可知a1=-7,所以Sn==n2-8n.所以当n=4时,Sn取得最小值,且最小值为-16.故存在正整数n=4,使得Sn有最小值,最小值为-16.13 不可以选择③作为补充条件.10.在数列{an}中,a1=8,a4=2,且满足an+2-2an+1+an=0(n∈N*).(1)求数列{an}的通项公式;(2)设Tn=|a1|+|a2|+…+|an|,求Tn.解 (1)∵an+2-2an+1+an=0,∴an+2-an+1=an+1-an,∴数列{an}是等差数列,设其公差为d,∵a1=8,a4=2,∴d==-2,∴an=a1+(n-1)d=10-2n,n∈N*.(2)设数列{an}的前n项和为Sn,则由(1)可得,Sn=8n+×(-2)=9n-n2,n∈N*.由(1)知an=10-2n,令an=0,得n=5,∴当n>5时,an<0,则Tn=|a1|+|a2|+…+|an|=a1+a2+…+a5-(a6+a7+…+an)=S5-(Sn-S5)=2S5-Sn=2×(9×5-25)-(9n-n2)=n2-9n+40;当n≤5时,an≥0,则Tn=|a1|+|a2|+…+|an|=a1+a2+…+an=9n-n2,∴Tn=11.(多选)已知数列{an}是公差不为0的等差数列,前n项和为Sn,满足a1+5a3=S8,下列选项正确的有( )A.a10=0B.S10最小C.S7=S12D.S20=0答案 AC解析 根据题意,数列{an}是等差数列,若a1+5a3=S8,即a1+5a1+10d=8a1+28d,变形可得a1=-9d.又由an=a1+(n-1)d=(n-10)d,得a10=0,故A正确;13 不能确定a1和d的符号,不能确定S10最小,故B不正确;又由Sn=na1+=-9nd+=×(n2-19n),得S7=S12,故C正确;S20=20a1+d=-180d+190d=10d.因为d≠0,所以S20≠0,故D不正确.12.已知等差数列{an}的前n项和为Sn,且=,则等于( )A.B.C.D.答案 D解析 ===,所以=,所以===.13.将数列{2n-1}与{3n-2}的公共项从小到大排列得到数列{an},则{an}的前n项和为________.答案 3n2-2n解析 将数列{2n-1}与{3n-2}的公共项从小到大排列得到数列{an},则{an}是以1为首项,以6为公差的等差数列,故它的前n项和为Sn=n×1+×6=3n2-2n.14.设等差数列{an}的前n项和为Sn,若S6>S7>S5,则满足SnSn+1<0的正整数n的值为______.答案 12解析 由S6>S7>S5,得S7=S6+a7<S6,S7=S5+a6+a7>S5,所以a7<0,a6+a7>0,所以S13==13a7<0,S12==6(a6+a7)>0,所以S12S13<0,即满足SnSn+1<0的正整数n的值为12.15.将正奇数排成一个三角形阵,按照如图排列的规律,则第15行第3个数为( )13 A.213B.215C.217D.219答案 B解析 由题意知,在三角形数阵中,前14行共排了1+2+3+…+14==105个数,则第15行第3个数是数阵的第108个数,即所求数字是首项为1,公差为2的等差数列的第108项,则a108=1+(108-1)×2=215.16.对于数列{an},定义Hn=为{an}的“优值”,已知数列{an}的“优值”Hn=2n+1,记数列{an-20}的前n项和为Sn,则Sn的最小值为( )A.-70B.-72C.-64D.-68答案 B解析 ∵数列{an}的“优值”Hn=2n+1,∴Hn==2n+1,∴a1+2a2+…+2n-1an=n·2n+1,∴2n-1an=n·2n+1-(n-1)·2n(n≥2),∴an=4n-2(n-1)=2n+2(n≥2),又a1=4,满足上式,∴an=2n+2(n∈N*),∴an-20=2n-18,∴{an-20}是以-16为首项,2为公差的等差数列,所以{an-20}的前n项和Sn=n2-17n.由得8≤n≤9,∴Sn的最小值为S8=S9=-72.13
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
2022新高考数学人教A版一轮总复习训练6.2等差数列专题检测(带解析)
2022新高考数学人教A版一轮总复习训练6.2等差数列综合集训(带解析)
2023版新高考数学一轮总复习第6章第2讲等差数列及其前n项和课件
【高考讲坛】2023高考数学一轮复习 第5章 第2节 等差数列课后限时自测 理 苏教版
【高考总动员】2023高考数学大一轮复习 第5章 第2节 等差数列及其前n项和课时提升练 文 新人教版
(广东专用)2022高考数学第一轮复习用书 第42课 等差数列 文
高考总动员2022届高考数学大一轮复习第5章第2节等差数列及其前n项和课时提升练文新人教版
2024届高考数学一轮复习(新教材人教A版强基版)第六章数列6.2等差数列课件
备考2024届高考数学一轮复习分层练习第五章数列第2讲等差数列
备考2024届高考数学一轮复习强化训练第五章数列第2讲等差数列
文档下载
收藏
所属:
高考 - 一轮复习
发布时间:2024-09-11 17:00:01
页数:13
价格:¥1
大小:411.36 KB
文章作者:180****8757
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划