首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
一轮复习
>
2024年高考数学一轮复习(新高考版) 第3章 §3.7 利用导数研究函数的零点
2024年高考数学一轮复习(新高考版) 第3章 §3.7 利用导数研究函数的零点
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/12
2
/12
剩余10页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
§3.7 利用导数研究函数的零点考试要求 函数零点问题在高考中占有很重要的地位,主要涉及判断函数零点的个数或范围.高考常考查三次函数与复合函数的零点问题,以及函数零点与其他知识的交汇问题,一般作为解答题的压轴题出现.题型一 利用函数性质研究函数的零点例1 已知函数f(x)=xsinx-1.(1)讨论函数f(x)在区间上的单调性;(2)证明:函数y=f(x)在[0,π]上有两个零点.(1)解 因为函数f(x)的定义域为R,f(-x)=-xsin(-x)-1=f(x),所以函数f(x)为偶函数,又f′(x)=sinx+xcosx,且当x∈时,f′(x)≥0,所以函数f(x)在上单调递增,又函数f(x)为偶函数,所以f(x)在上单调递减,综上,函数f(x)在上单调递增,在上单调递减.(2)证明 由(1)得,f(x)在上单调递增,又f(0)=-1<0,f =-1>0,所以f(x)在内有且只有一个零点,当x∈时,令g(x)=f′(x)=sinx+xcosx,则g′(x)=2cosx-xsinx,当x∈时,g′(x)<0恒成立,即g(x)在上单调递减,又g=1>0,g(π)=-π<0,则存在m∈,使得g(m)=0,且当x∈时,g(x)>g(m)=0,即f′(x)>0,则f(x)在上单调递增,当x∈(m,π]时,有g(x)<g(m)=0,即f′(x)<0,则f(x)在(m,π]上单调递减,又f =-1>0,f(π)=-1<0,所以f(x)在(m,π]上有且只有一个零点,综上,函数y=f(x)在[0,π]上有2个零点.思维升华 12 利用函数性质研究函数的零点,主要是根据函数单调性、奇偶性、最值或极值的符号确定函数零点的个数,此类问题在求解过程中可以通过数形结合的方法确定函数存在零点的条件.跟踪训练1 (2023·芜湖模拟)已知函数f(x)=ax+(a-1)lnx+-2,a∈R.(1)讨论f(x)的单调性;(2)若f(x)只有一个零点,求a的取值范围.解 (1)函数f(x)的定义域为(0,+∞),f′(x)=a+-=,①若a≤0,则f′(x)<0,f(x)在(0,+∞)上单调递减;②若a>0,则当x∈时,f′(x)<0,f(x)单调递减,当x∈时,f′(x)>0,f(x)单调递增.综上,当a≤0时,f(x)在(0,+∞)上单调递减;当a>0时,f(x)在上单调递减,在上单调递增.(2)若a≤0,f =+1-a+e-2=a+e-1>0,f(1)=a-1<0.结合函数的单调性可知,f(x)有唯一零点.若a>0,因为函数在上单调递减,在上单调递增,所以要使得函数有唯一零点,只需f(x)min=f =1-(a-1)lna+a-2=(a-1)(1-lna)=0,解得a=1或a=e.综上,a≤0或a=1或a=e.题型二 数形结合法研究函数的零点例2 (2023·郑州质检)已知函数f(x)=ex-ax+2a,a∈R.(1)讨论函数f(x)的单调性;(2)求函数f(x)的零点个数.解 (1)f(x)=ex-ax+2a,定义域为R,且f′(x)=ex-a,当a≤0时,f′(x)>0,则f(x)在R上单调递增;当a>0时,令f′(x)=0,则x=lna,当x<lna时,f′(x)<0,f(x)单调递减;当x>lna时,f′(x)>0,f(x)单调递增.综上所述,当a≤0时,f(x)在R上单调递增;当a>0时,f(x)在(-∞,lna)上单调递减,在(lna,+∞)上单调递增.(2)令f(x)=0,得ex=a(x-2),当a=0时,ex=a(x-2)无解,∴f(x)无零点,当a≠0时,=,12 令φ(x)=,x∈R,∴φ′(x)=,当x∈(-∞,3)时,φ′(x)>0;当x∈(3,+∞)时,φ′(x)<0,∴φ(x)在(-∞,3)上单调递增,在(3,+∞)上单调递减,且φ(x)max=φ(3)=,又x→+∞时,φ(x)→0,x→-∞时,φ(x)→-∞,∴φ(x)的图象如图所示.当>,即0<a<e3时,f(x)无零点;当=,即a=e3时,f(x)有一个零点;当0<<,即a>e3时,f(x)有两个零点;当<0,即a<0时,f(x)有一个零点.综上所述,当a∈[0,e3)时,f(x)无零点;当a∈(-∞,0)∪{e3}时,f(x)有一个零点;当a∈(e3,+∞)时,f(x)有两个零点.思维升华 含参数的函数零点个数,可转化为方程解的个数,若能分离参数,可将参数分离出来后,用x表示参数的函数,作出该函数的图象,根据图象特征求参数的范围或判断零点个数.跟踪训练2 (2023·长沙模拟)已知函数f(x)=alnx-2.(1)若a=2,求曲线y=f(x)在x=1处的切线方程;(2)若函数f(x)在(0,16]上有两个零点,求a的取值范围.解 (1)当a=2时,f(x)=2lnx-2,该函数的定义域为(0,+∞),f′(x)=-,又f(1)=-2,f′(1)=1,因此,曲线y=f(x)在x=1处的切线方程为y+2=x-1,即x-y-3=0.(2)①当a≤0时,f′(x)=-<0,则f(x)在(0,+∞)上单调递减,不符合题意;12 ②当a>0时,由f(x)=alnx-2=0可得=,令g(x)=,其中x>0,则直线y=与曲线y=g(x)的图象在(0,16]内有两个交点,g′(x)==,令g′(x)=0,可得x=e2<16,列表如下,x(0,e2)e2(e2,16]g′(x)+0-g(x)↗极大值↘所以函数g(x)在区间(0,16]上的极大值为g(e2)=,且g(16)=ln2,作出g(x)的图象如图所示.由图可知,当ln2≤<,即e<a≤时,直线y=与曲线y=g(x)的图象在(0,16]内有两个交点,即f(x)在(0,16]上有两个零点,因此,实数a的取值范围是.题型三 构造函数法研究函数的零点例3 (12分)(2022·新高考全国Ⅰ)已知函数f(x)=ex-ax和g(x)=ax-lnx有相同的最小值.(1)求a;[切入点:求f(x),g(x)的最小值](2)证明:存在直线y=b,其与两条曲线y=f(x)和y=g(x)共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.[关键点:利用函数的性质与图象判断ex-x=b,x-lnx=b的解的个数及解的关系]12 12 12 思维升华 涉及函数的零点(方程的根)问题,主要利用导数确定函数的单调区间和极值点,根据函数零点的个数寻找函数在给定区间内的极值以及区间端点的函数值与0的关系,从而求得参数的取值范围.跟踪训练3 (2021·全国甲卷)已知a>0且a≠1,函数f(x)=(x>0).(1)当a=2时,求f(x)的单调区间;(2)若曲线y=f(x)与直线y=1有且仅有两个交点,求a的取值范围.解 (1)当a=2时,f(x)=(x>0),f′(x)=(x>0),令f′(x)>0,则0<x<,此时函数f(x)单调递增,令f′(x)<0,则x>,此时函数f(x)单调递减,所以函数f(x)的单调递增区间为,单调递减区间为.(2)曲线y=f(x)与直线y=1有且仅有两个交点,12 可转化为方程=1(x>0)有两个不同的解,即方程=有两个不同的解.设g(x)=(x>0),则g′(x)=(x>0),令g′(x)==0,得x=e,当0<x<e时,g′(x)>0,函数g(x)单调递增,当x>e时,g′(x)<0,函数g(x)单调递减,故g(x)max=g(e)=,且当x>e时,g(x)∈,又g(1)=0,所以0<<,所以a>1且a≠e,即a的取值范围为(1,e)∪(e,+∞).课时精练1.(2023·济南质检)已知函数f(x)=,a∈R.(1)若a=0,求f(x)的最大值;(2)若0<a<1,求证:f(x)有且只有一个零点.(1)解 若a=0,则f(x)=,其定义域为(0,+∞),∴f′(x)=,由f′(x)=0,得x=e,∴当0<x<e时,f′(x)>0;当x>e时,f′(x)<0,∴f(x)在(0,e)上单调递增,在(e,+∞)上单调递减,∴f(x)max=f(e)=.(2)证明 f′(x)==,由(1)知,f(x)在(0,e)上单调递增,在(e,+∞)上单调递减,∵0<a<1,12 ∴当x>e时,f(x)==a+>0,故f(x)在(e,+∞)上无零点;当0<x<e时,f(x)=,∵f =a-e<0,f(e)=a+>0,且f(x)在(0,e)上单调递增,∴f(x)在(0,e)上有且只有一个零点,综上,f(x)有且只有一个零点.2.函数f(x)=ax+xlnx在x=1处取得极值.(1)求f(x)的单调区间;(2)若y=f(x)-m-1在定义域内有两个不同的零点,求实数m的取值范围.解 (1)f(x)的定义域为(0,+∞),f′(x)=a+lnx+1,由f′(1)=a+1=0,解得a=-1.则f(x)=-x+xlnx,∴f′(x)=lnx,令f′(x)>0,解得x>1;令f′(x)<0,解得0<x<1.∴f(x)的单调递增区间为(1,+∞),单调递减区间为(0,1).(2)y=f(x)-m-1在(0,+∞)内有两个不同的零点,则函数y=f(x)与y=m+1的图象在(0,+∞)内有两个不同的交点.由(1)知,f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,f(x)min=f(1)=-1,f(e)=0,作出f(x)图象如图.由图可知,当-1<m+1<0,即-2<m<-1时,y=f(x)与y=m+1的图象有两个不同的交点.因此实数m的取值范围是(-2,-1).3.(2022·河南名校联盟模拟)已知f(x)=(x-1)ex-ax3+a(a∈R).(1)若函数f(x)在[0,+∞)上单调递增,求a的取值范围;(2)当a≤e时,讨论函数f(x)零点的个数.12 解 (1)f(x)=(x-1)ex-ax3+a,则f′(x)=x(ex-ax).∵函数f(x)在[0,+∞)上单调递增,∴f′(x)=x(ex-ax)≥0在[0,+∞)上恒成立,则ex-ax≥0,x≥0.当x=0时,则1≥0,即a∈R;当x>0时,则a≤,构建g(x)=(x>0),则g′(x)=(x>0),令g′(x)>0,则x>1,令g′(x)<0,则0<x<1,∴g(x)在(0,1)上单调递减,在(1,+∞)上单调递增,则g(x)≥g(1)=e,∴a≤e,综上所述,a≤e.(2)f(x)=(x-1)ex-ax3+a=(x-1),令f(x)=0,则x=1或ex-a(x2+x+1)=0,对于ex-a(x2+x+1)=0,即=a,构建h(x)=,则h′(x)=,令h′(x)>0,则x>1或x<0,令h′(x)<0,则0<x<1,∴h(x)在(-∞,0),(1,+∞)上单调递增,在(0,1)上单调递减,h(0)=1,h(1)=且h(x)>0,当x∈R时恒成立,12 则当a=e时,=a有两个根x1=1,x2<0;当0<a<e时,=a只有一个根x3<0;当a≤0时,=a无根.综上所述,当a≤0时,f(x)只有一个零点;当0<a≤e时,f(x)有两个零点.4.(2022·全国乙卷)已知函数f(x)=ax--(a+1)lnx.(1)当a=0时,求f(x)的最大值;(2)若f(x)恰有一个零点,求a的取值范围.解 (1)当a=0时,f(x)=--lnx(x>0),所以f′(x)=-=.当x∈(0,1)时,f′(x)>0,f(x)单调递增;当x∈(1,+∞)时,f′(x)<0,f(x)单调递减,所以f(x)max=f(1)=-1.(2)由f(x)=ax--(a+1)lnx(x>0),得f′(x)=a+-=(x>0).当a=0时,由(1)可知,f(x)不存在零点;当a<0时,f′(x)=,当x∈(0,1)时,f′(x)>0,f(x)单调递增,当x∈(1,+∞)时,f′(x)<0,f(x)单调递减,所以f(x)max=f(1)=a-1<0,所以f(x)不存在零点;当a>0时,f′(x)=,当a=1时,f′(x)≥0,f(x)在(0,+∞)上单调递增,因为f(1)=a-1=0,所以函数f(x)恰有一个零点;当a>1时,0<<1,故f(x)在,(1,+∞)上单调递增,在上单调递减.12 因为f(1)=a-1>0,所以f >f(1)>0,当x→0+时,f(x)→-∞,由零点存在定理可知f(x)在上必有一个零点,所以a>1满足条件,当0<a<1时,>1,故f(x)在(0,1),上单调递增,在上单调递减.因为f(1)=a-1<0,所以f <f(1)<0,当x→+∞时,f(x)→+∞,由零点存在定理可知f(x)在上必有一个零点,即0<a<1满足条件.综上,若f(x)恰有一个零点,则a的取值范围为(0,+∞).12
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
2023届人教A版新高考数学新教材一轮复习高考解答题专项一第3课时利用导数研究函数的零点(Word版带解析)
2023届北师版高考数学一轮高考解答题专项一第3课时利用导数研究函数的零点(Word版附解析)
第三章 §3.7 利用导数研究函数的零点
第三章 §3.7 利用导数研究函数的零点
2024年新高考数学一轮复习题型归类与强化测试专题19利用导数研究函数的零点(Word版附解析)
2023年新高考一轮复习讲义第21讲 利用导数探究函数的零点问题(解析版)
2023年新高考一轮复习讲义第21讲 利用导数探究函数的零点问题(原卷版)
2024年新高考数学一轮复习题型归纳与达标检测第19讲导数的应用——利用导数研究函数零点问题(达标检测)(Word版附解析)
2024年新高考数学一轮复习题型归纳与达标检测第19讲导数的应用——利用导数研究函数零点问题(讲)(Word版附解析)
高考数学专题突破练7 利用导数研究函数的零点
文档下载
收藏
所属:
高考 - 一轮复习
发布时间:2024-09-11 09:20:02
页数:12
价格:¥1
大小:2.17 MB
文章作者:180****8757
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划