首页

函数与导数 微专题(六) 导数与不等式的证明问题

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/19

2/19

3/19

4/19

剩余15页未读,查看更多内容需下载

证明不等式的基本方法利用单调性若f(x)在[a,b]上是增函数,则①∀x∈[a,b],有f(a)≤f(x)≤f(b);②∀x1,x2∈[a,b],且x1<x2,有f(x1)<f(x2).对于减函数有类似结论利用最值若f(x)在某个范围D内有最大值M(或最小值m),则∀x∈D,有f(x)≤M(或f(x)≥m)构造函数证明f(x)<g(x),可构造函数F(x)=f(x)-g(x),证明F(x)<0

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2024-04-29 16:00:02 页数:19
价格:¥3 大小:457.60 KB
文章作者:180****8757

推荐特供

MORE