福建省福州市2021-2022学年高三上学期期末质量抽测数学试卷官方答案解析(高考一检)
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
1/21
2/21
3/21
4/21
5/21
6/21
7/21
8/21
9/21
10/21
剩余11页未读,查看更多内容需下载
2021-2022学年第一学期福州市高三期末质量检测数学试题(完卷时间:120分钟;满分:150分)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1到3页,第Ⅱ卷3至4页.注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.第Ⅱ卷用0.5毫米黑色签字笔在答题卡上书写作答.在试题卷上作答,答案无效.3.考试结束,考生必须将答题卡交回.第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.*21.已知集合A2,1,BxNxx20≤,则ABA.B.2,11,C.2,112,,D.2,1012,,,【答案】C*【解析】BxN1≤x≤212,,所以AB2,112,,,故选C.【考查意图】本小题以集合为载体,主要考查集合的概念和基本运算等基础知识;考查运算求解能力、推理论证能力;考查数学运算、逻辑推理等数学核心素养,体现基础性.2.已知z34i,则zz+iA.1+3iB.84iC.9+3iD.29+3i【答案】C【解析】因为z34i,所以zz+i5+34ii=9+3i,故选C.【考查意图】本小题以复数为载体,主要考查复数的基本概念等基础知识;考查运算求解能力、推理论证能力;考查数学运算、逻辑推理等数学核心素养,体现基础性.3.已知甲、乙、丙、丁、戊五位同学高一入学时年龄的平均数、中位数均为16,方差为0.8,则三年后,下列判断错误的是A.这五位同学年龄的平均数变为19B.这五位同学年龄的中位数变为19C.这五位同学年龄的方差仍为0.8D.这五位同学年龄的方差变为3.8【答案】D【考查意图】本小题以“五位同学的年龄”为载体,考查平均数、中位数、方差等基础知识;考查应用意识;考查逻辑推理等核心素养;体现基础性与应用性.高三数学参考答案及评分细则(第1页共21页)
614.3x展开式中的常数项为xA.540B.15C.15D.135【答案】D61rr6r【解析】二项式3x的展开式的第r1项为Tr16C3)x(xx633rr6r62r421展开(1)C36x.令60r,解得r4,所以T5C63135,所以3x2x式中的常数项为135.故选D.【考查意图】本小题以二项式为载体,主要考查二项式定理等基础知识;考查运算求解能力、推理论证能力;考查数学运算、逻辑推理等核心素养,体现基础性.3xx10,>,a5.已知函数fx()为偶函数,则2+b3axb,x<0313A.3B.C.D.222【答案】B33【解析】解法一、当x0时,x0,所以f(x)(x)1x+1,因为fx()为偶33a3函数,所以fx()f(x)x+1,又fx()axb,所以ab1,1,所以2+b.2ff(1)1,ab2,a1,解法二、因为fx()为偶函数,所以所以解得经ff(2)2,8ab9,b1,a1,3a检验,符合题意,所以2+b.b12【考查意图】本小题以分段函数为载体,主要考查函数的奇偶性的定义等基础知识;考查运算求解能力、推理论证能力;考查数学运算、逻辑推理等核心素养,体现基础性.6.已知一张边长为2的正方形纸片绕着它的一条边所在的直线旋转弧度,则该纸片扫4过的区域形成的几何体的表面积为A.2B.C.D.【答案】C【解析】因为一个边长为2的正方形纸片绕着一条边旋转,所形成的几何体为柱体,412该柱体是底面半径r为2,高h为2的圆柱的八分之一,所以其表面积S22rhr8212222222282,故选C.8高三数学参考答案及评分细则(第2页共21页)
【考查意图】本小题以旋转体为载体,主要考查旋转体的体积等基础知识;考查空间想象能力、推理论证能力、运算求解能力;考查数形结合思想、化归与转化思想;考查直观想象、逻辑推理、数学运算等核心素养,体现基础性.7.已知函数fxsinx的部分图象如图所示,则fx的单调递增区间为1515A.k,,kkZB.2k,2k,kZ66661515C.k,,kkZD.2k,2k,kZ6666【答案】D2mmZ,,3【解析】解法一、由解得42,mmZ2,mmZ33fxsinx2msinx,3315令kxkkZ,解得kxkkZ.故选D.2326614T41335解法二、由图象知1,T2,又x时,fx()取得最大值,23326排除A、B、C.故选D.【考查意图】本小题以三角函数的图象为载体,考查三角函数的图象和性质等基础知识;考查抽象概括能力、推理论证能力;考查数形结合思想;考查直观想象、逻辑推理等核心素养,体现基础性和综合性.22xy8.已知O为坐标原点,F是双曲线C:1a>0,b>0的左焦点,A为C的右22ab顶点.过F作C的渐近线的垂线,垂足为M,且与y轴交于点P.若直线AM经过OP的中点,则C的离心率为34A.2B.C.3D.23【答案】A【解析】解法一、如图所示,设AM交y轴于Q,过M作x轴的垂线,垂足为N.由双曲线性质可知,FMb,OFcOM,a,由△FMN∽△FPO,△AQO∽△AMN得高三数学参考答案及评分细则(第3页共21页)
2acaFNMNAOQOFNAO1c1,,以上两式相乘得,所以,2FOPOANMNFOAN2a2cac22aca1ca111所以,即,所以1,解得e2.故选A.acca2c2e2yPMQFNOAx解法二、如图所示,设AM交y轴于Q,过M作x轴的垂线,垂足为N.不妨设渐近byx,baaca线方程为yx,则直线FP的方程为yxc,令x0,得yP.由abbyaxcbab2baabcb可得M,,则k,所以直线AM的方程为yxa,AM2ccaacacacab2abac2222令x0得yQ.因为Q为OP中点,所以,整理得acc22bca,acacb222即cac20a,所以ee20,解得e2,或e1(舍去).故选A.yPMQFNOAx解法三:如图所示,设AM交y轴于Q.由双曲线性质可知,FMb,OFc,OMaOA,所以OMQOAQ.在Rt△OPM中,Q为OP中点,所以MQOQPQ,所以QOMOMQOAQ,所以Rt△OMP≌Rt△AOQ,所以MPOQ,所以△MPQ为正三角形,所以MPQ60,故MFO30,2ab所以ca2,所以e2(也可以利用.ktan30,即e12),故选A.FPba高三数学参考答案及评分细则(第4页共21页)
yPMQFOAx【考查意图】本小题以双曲线为载体,主要考查双曲线的图象和性质、直线与双曲线的位置关系等基础知识;考查运算求解能力、推理论证能力;考查数形结合思想、化归与转化思想;考查直观想象、逻辑推理、数学运算等核心素养,体现基础性和综合性.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知向量mn=31,,mn=1,1,则A.mn∥nB.mnnC.mn2D.mn,45【答案】BCD.11【解析】依题意,m=mnmn20,,n=[mnmn]11,,22所以mnn1,111,0,所以mnn,所以选项A错误,B正确.mn22所以mn22,选项C正确;cosmn,,mn222因为0≤mn,≤180,所以mn,45,选项D正确.【考查意图】本小题以平面向量为载体,考查平面向量的坐标表示、平面向量共线与垂直、平面向量模长、夹角等基础知识;考查推理论证能力、运算求解能力;考查数形结合思想、函数与方程思想;考查直观想象、逻辑推理等核心素养,体现基础性和综合性.10.某人有6把钥匙,其中n把能打开门.如果随机地取一把钥匙试着开门,把不能开门的钥匙扔掉,设第二次才能打开门的概率为p,则下列结论正确的是11A.当n1时,pB.当n2时,p,6334C.当n3时,pD.当n4时,p105【答案】AC511424【解析】当n1时,p,选项A正确;当n2时,p,选项B6566515333244错误;当n3时,p,选项C正确;当n4时,p,选项D65106515错误.故选AC.【考查意图】本小题以“取钥匙开门”为载体,考查随机事件的概率等基础知识;考查推理论证能力、运算求解能力与创新意识;考查化归与转化思想、或然与必然思想;高三数学参考答案及评分细则(第5页共21页)
考查数学建模、逻辑推理、数学运算等核心素养,体现综合性、应用性.11.已知AB30,,30,,动点C满足CA2CB,记C的轨迹为.过A的直线与交于PQ,两点,直线BP与的另一个交点为M,则A.QM,关于x轴对称B.△PAB的面积的最大值为63C.当PMQ45时,PQ42D.直线AC的斜率的取值范围为33,【答案】AC.2222【解析】设Cxy,,由CA2CB得xy323xy,整理得的方22程为x5y16,其图象是以D50,为圆心,半径r4的圆.故11S△PABmaxABr6412,选项B错误.因为PA2PB,MA2MB,所以22PAPB,所以PABMAB,又轨迹的图象关于x轴对称,所以QM,关于x轴对MAMB称,选项A正确.当PMQ45时,PDQ45290,则△DPQ为等腰直角三角形,PQ2r42,选项C正确.当直线AC与圆D相切时,CDAC,此时AD82r2CD,切线AC的倾斜角为30和150,结合图象,可得直线AC的斜率33的取值范围为,.选项D错误.故选AC.33y4Q32P1ABD–3–2–1O123456789x–1–2–3–4M【考查意图】本小题以圆为载体,主要考查直线与圆的位置关系、弦长、图象的对称性等基础知识;考查运算求解能力、推理论证能力;考查数形结合思想、函数与方程思想;考查直观想象、逻辑推理、数学运算等核心素养,体现基础性和综合性.xx112.设函数fx()xe1xe,则A.fx()f(1x)高三数学参考答案及评分细则(第6页共21页)
B.函数fx()有极大值为eC.若xx1,则xfx()xfx≥e1211221D.若xx<1,且x>,则fx()<f1x122212【答案】ACD1【解析】易验证A是正确的,也即函数fx()关于直线x对称.故选项A正确;2xx11xxxx11因为fx()xee2exexx+1e2e,所以f()0,21x11x3xx当x时,fx()x+1ex2e(ee),此时xx1,所以fx()0,221故函数fx()在(,)上单调递增;211由于函数fx()关于直线x对称,所以函数fx()在(,)上单调递减.2211所以函数fx()在x处有极小值,也是最小值,f()e.故选项B错误;22111若xx1,且x,则xx1,由fx()在(,)上单调递增得12221222fx()21f1x.故选项D正确;由于函数fx()的最小值为e,所以fx()e,1若xx1,则xx1,所以fxf1x,122121又因为fxf1x,所以fxfx,1112故xfx()xfxxfx()xfx()xxfx()fx()e,故选项C正确.112211211211故选ACD.【考查意图】本小题以函数为载体,考查函数与导数、函数的基本性质、函数的极值等基础知识;考查抽象概括能力、推理论证能力、创新意识;考查数形结合思想、化归与转化思想;考查数学抽象、逻辑推理、数学运算、直观想象等核心素养;体现综合性与创新性.第Ⅱ卷注意事项:用0.5毫米黑色签字笔在答题卡上书写作答.在试题卷上作答,答案无效.三、填空题:本大题共4小题,每小题5分,共20分.313.曲线fx()x2x在x0处的切线方程是.【答案】20xy高三数学参考答案及评分细则(第7页共21页)
【解析】依题意得,f(0)0,fx32x2,所以f02,所以所求的切线方程为yx2,即20xy.【考查意图】本小题以三次函数为载体、考查导数的几何意义等基础知识;考查抽象概括能力、运算求解能力,考查化归与转化思想、数形结合思想;考查数学抽象、直观想象、数学运算等核心素养,体现基础性.14.在正三棱柱ABCABC中,ABAA2,F是线段AB上的动点,则AFFC的1111111最小值为.【答案】62【解析】将正三棱柱ABCABC上底面沿AB展开至平面ABBA上,如图所示,因1111111AAC11为AAAC2,且AAC90+60=150,所以AC2AAsin22sin751111111262,所以AFFC的最小值为62.1【考查意图】本小题以正三棱柱为载体,主要考查空间中动点到两定点的距离和最小值等基础知识;考查空间想象能力、推理论证能力;考查化归与转化思想;考查直观想象、逻辑推理等核心素养,体现基础性.215.抛物线Ey:2pxp(0)的焦点为F,点A是E的准线与坐标轴的交点,点P在E上,若PAF30,则sinPFA.3【答案】3y【解析】过P作准线的垂线,垂足为B,所以BPAPAF30,PBPF.BPPB在Rt△BPA中,cos30,AOFxPAPF即在△PAF中,cos30,PA高三数学参考答案及评分细则(第8页共21页)
PAPF又由正弦定理,sinPFAsinPAFPAsin303所以sinPFAsinPAF.PFcos303【考查意图】本小题以抛物线为载体,主要考查抛物线的方程与定义、解三角形等基础知识;考查运算求解能力、推理论证能力;考查数形结合思想;考查数学运算、逻辑推理等数学核心素养,体现基础性.16.函数yx称为高斯函数,x表示不超过x的最大整数,如0.90,lg991.已知数列a满足a3,且anaa,若balg,则数列b的前2022项n3nn1nnnn和为.【答案】4959aaann13【解析】利用累乘法(或1),得an.记b的前n项和为T,nnnnn13当19n时,0lga1时,balg0;nnn当10n99时,1lga2时,b1;nn当100n999时,2lga3时,b2;nn当1000n2022时,3lga4时,b3;nn所以Tlgalgalga9019002102334959.2022122022【考查意图】本小题以数列为载体,考查数列求通项、递推数列、数列前n项的和等基础知识;考查推理论证能力、运算求解能力、创新意识;考查数形结合思想、化归与转化思想;考查数学抽象、逻辑推理、直观想象、数学运算等核心素养;体现综合性与创新性.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)设数列a是首项为1的等差数列,若a是a,a的等比中项,且aa.n21523(1)求a的通项公式;n1(2)设bn,求数列bn的前n项的和Sn.aann1【考查意图】本小题主要考查等比中项、等差数列的通项公式、裂项相消求和等基础知识;考查推理论证能力、运算求解能力;考查化归与转化思想、函数与方程思想;考查逻辑推理、数学运算等核心素养,体现基础性、综合性.满分10分.【解】(1)设等差数列a的公差为d,n因为a1,且a是a,a的等比中项,12152所以aaa,···················································································1分215高三数学参考答案及评分细则(第9页共21页)
2所以adaa4d,··································································2分111又因为a1,12所以1dd14解得d2,或d0,··········································································3分又因为aa,23所以d0,所以d2,·······································································4分所以aan1d12n12n1.···············································5分n1(2)由(1)知,a21n,n1因为b,naann11111所以b(),············································7分n(2n1)(2n1)22n12n111111111所以S(1)()()()···························8分n2335572nn12111=(1).·········································································9分22n1n.·················································································10分21n18.(12分)为让人民享受到更优质的教育服务,我国逐年加大对教育的投入.下图是我国2001年至2019年间每年普通本科招生数y(单位:万人)的条形图.普通高等学校本科招生数(万人)(数据来源:国家统计局网站)为了预测2022年全国普通本科招生数,建立了y与时间变量t的三个回归模型.其中根据2001年至2019年的数据(时间变量t的值依次为123,,,,19)建立模型①:高三数学参考答案及评分细则(第10页共21页)
0.058t2yˆ166.9e,相关指数R0.87;模型②:ytˆ152.416.3,相关系数r0.97,相关122指数R0.95.根据2014年至2019年的数据(时间变量t的值依次为123,,,,6)建22立模型③:ytˆ372.89.8,相关系数r0.99,相关指数R0.99.33(1)可以根据模型①得到2022年全国普通本科招生数的预测值为597.88万人,请你分别利用模型②、③,求2022年全国普通本科招生数的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.【考查意图】本小题主要考查回归分析、相关指数、相关系数等基础知识;考查数据处理能力、推理论证能力、运算求解能力与创新意识;考查函数与方程思想、化归与转化思想;考查数学建模、逻辑推理、数学运算等核心素养,体现综合性、应用性与创新性.满分12分.【解】(1)利用模型②,2022年全国普通本科招生数的预测值为yˆ152.416.322511(万人);·······················································3分利用模型③,2022年全国普通本科招生数的预测值为yˆ372.89.89461(万人).·························································6分(2)利用模型③得到的预测值更可靠.················································7分理由如下:(ⅰ)从条形图可以看出,2001年至2010年,2011年至2019年两个区间增长率有显著区别,2014年至2019年招生数增长速度趋于稳定,线性关系更为明显,故模型③比模型①、②能更好地描述时间变量与招生数的变化趋势.···································9分2(ⅱ)从计算结果可以看出,模型③的相关指数R0.99最高,说明其拟合效果最3好.模型③的相关系数r0.99比模型②的相关系数r0.97高,说明模型③的两变量的32相关性比模型②更强,因此利用模型③得到的预测值更可靠.···························12分19.(12分)记△ABC的内角A,B,C的对边分别为a,b,c.已知cacosBccosA.(1)试判断△ABC的形状,并说明理由;a(2)设点D在边AC上,若ADBD,sinADBsinABC,求的值.b【考查意图】本小题主要考查解三角形等基础知识;考查推理论证能力、运算求解能力;考查函数与方程思想、数形结合思想;考查直观想象、逻辑推理、数学运算等核心素养,体现基础性、综合性.满分12分.【解】解法一、(1)△ABC为直角三角形或△ABC为等腰三角形.·················1分理由如下:在△ABC中,因为cacosBccosA,根据正弦定理得,sinCsincosABsincosCA,·····························································2分高三数学参考答案及评分细则(第11页共21页)
又因为Cπ()AB,所以sin(AB)sincosABsincosCA,即sincosABcossinABsincosABsincosCA,即cossinABsinCcosA,···································································3分所以cosA0或sinBCsin,······························································4分π若cosA0,则A,故此时△ABC为直角三角形.·······························5分2若sinBCsin,则由正弦定理得,bc.故此时△ABC为等腰三角形.综上,△ABC为直角三角形或△ABC为等腰三角形.·································6分π(2)由(1)知,A或bc,2π若A,则ADBD,这与已知条件ADBD相矛盾,2π所以A;·······················································································7分2所以bc,A所以ABCC.又因为sinADBsinABC,D所以sin(πADB)sinC,即sinBDCsinC,BC故BDCC,················································································8分所以ADBC.DCBC在△DBC中,,sinDBCsinBDCACBC在△ABC中,,···························································9分sinABCsinA2两式相乘得ACDCBC,································································10分2(也可通过等腰△ABC△BDC得到ACDCBC.)又CDACADACBDACBC,2所以bba()a,·············································································11分a51a51解得或(舍去).b2b2a51所以的值为.········································································12分b2解法二、(1)△ABC为直角三角形或△ABC为等腰三角形.··························1分理由如下:因为cacosBccosA,高三数学参考答案及评分细则(第12页共21页)
222222acbbca根据余弦定理,得cac,·······························2分22acbc222222acbbca,22cb222222acbbca所以c,························································3分22cb22222222cacbbca即,22cb222222所以bc(ba)cb(ca),······················································4分222所以bcbc()(bcb)(bcc)abc()0,222所以(bcb)(ca)0,································································5分222即abc或bc,所以△ABC为直角三角形或△ABC为等腰三角形.····································6分π(2)由(1)知,A或bc,2ππ若A,则ADBD,这与已知条件ADBD相矛盾,所以A;··········7分22所以bc,A所以ABCC.又因为sinADBsinABC,D所以sin(πADB)sinC,即sinBDCsinC,BC故BDCC,················································································8分所以ADBC.又因为ADBD,所以ADBA,即BD平分ABC,··············································································9分BADA所以,···············································································10分BCDCca所以,ababa所以,················································································11分abaa51a51解得或(舍去).b2b2a51所以的值为.········································································12分b2高三数学参考答案及评分细则(第13页共21页)
20.(12分)如图,在三棱锥DABC中,DA底面ABC,DACBCDA1,AB2,E是CD的中点,点F在DB上,且EFDB.(1)证明:DB平面AEF;F(2)求二面角ADBC的大小.E【考查意图】本小题主要考查空间直线与直线、直线与平面的位置关系,二面角等基础知识;考查推理论证能力、运算求解能力与空间想象能力;考查数形结合思想;考查直观想象、逻辑A推理、数学运算等核心素养,体现基础性、综合性.满分12分.CB【解】解法一、(1)DA平面ABC,且BC平面ABC,DABC,ACBC12,AB,222ACBCAB,ACBC,·························································1分DAACA,BC平面DAC,······················································2分AE平面DAC,BCAE.又DAAC,E是CD的中点,DCAE,······················································································3分又BCDCC,AE平面DBC.DB平面DBC,DBAE,··························································4分EFDBEF,AEE,DB平面AEF.·············································································5分(2)过点A作AG∥BC,由(1)知BC平面DAC,所以AG平面DAC.以点A为原点,分别以向量ACAGAD,,为x轴,y轴,z轴的正方向,建立如图所示的空间直角坐标系Axyz,·············································································6分则A0,0,0,C1,0,0,B1,1,0,D0,0,1,则AD0,0,1,BD1,1,1,CD1,0,1,设平面ADB的法向量mxyz,,,111mAD0,则mBD0,z0,1所以xyz0,111令y11,高三数学参考答案及评分细则(第14页共21页)
则m1,1,0.·····················································································8分设平面DBC的法向量为nxyz,,,222nCD0,xz0,22则所以nBD0,x2y2z20,令x1,则n1,0,1.·····································································10分211所以cosmn,,··························································11分222又因为二面角ADBC的平面角为锐角,所以二面角ADBC的大小为.·····················································12分3解法二、(1)DA平面ABC,且BC平面ABC,DABC,ACBC12,AB,222ACBCAB,ACBC,·························································1分DAACA,BC平面DAC,·············································································2分过点A作AG∥BC,所以AG平面DAC.以点A为原点,分别以向量ACAGAD,,为x轴,y轴,z轴的正方向,建立如图所示的空间直角坐标系Axyz,11则A0,0,0,B1,1,0,D0,0,1,E0,,,2211所以DB1,1,1,AE0,,,2211DBAE101(1)0,22········································································································4分DBAE,DBAE,DBEF,且AEEFF,DB平面AEF.················································································5分(2)因为EFDB,由(1)得DBAF,所以AFE为二面角ADBC的平面角,··············································6分因为C1,0,0,由(1)知,DB1,1,1.设Fxyz,,,则DFxy,,z1.·····························································7分高三数学参考答案及评分细则(第15页共21页)
因为点F在DB上,所以存在实数k,使得DFkDB,所以xky,kz,1k,即Fkk,,1k,因为AFDB,所以AFDB0,··························································8分1所以kk1k10,解得k,················································9分3112111112所以点F,,,所以FE,,,FA,,,···············10分3333663331FAFE61所以cosAFE,·············································11分FAFE66263又因为AFE0,,所以AFE.3所以二面角ADBC的大小为.························································12分3解法三、(1)略,同解法一;(2)因为EFDB,由(1)得DBAF,所以AFE为二面角ADBC的平面角,··············································6分DA底面ABC,DAACDA,,AB12因为ACDA1,所以AEDC,···············································7分2211因为AB2,所以SDAABDBAF,△DAB22DAAB126所以AF,·························································9分DB123由(1)知,AE平面DBC,因为EF平面DBC,所以AEEF,················································································10分2AE23所以sinAFE,·························································11分AF623因为AFE为锐角,所以AFE,3所以二面角ADBC的大小为.························································12分321.(12分)高三数学参考答案及评分细则(第16页共21页)
22xy定义:若点(,xy),(xy,)在椭圆M:1(ab>>0)上,且满足000022abxxyy00000,则称这两点是关于M的一对共轭点,或称(,xy)关于M的一个共轭点2200ab为(xy,).0022xy已知点A(3,1)在椭圆M:1,O为坐标原点.124(1)求点A关于M的所有共轭点的坐标;(2)设点P,Q在M上,且PQ∥OA,求点A关于M的所有共轭点和点P,Q所围成封闭图形面积的最大值.【考查意图】本小题主要考查新定义、点与椭圆的位置关系、平面向量共线、四边形的面积等基础知识;考查推理论证能力、运算求解能力;考查函数与方程思想、数形结合思想、化归与转化思想;考查直观想象、逻辑推理、数学运算等核心素养,体现基础性、综合性与创新性.满分12分.【解】解法一、(1)设点A关于M的共轭点的坐标为(,)xy,113xy110,124依题意得,,····································································2分22xy111124x3,x3,11解得,或;·····························································4分y3y311即A关于M的两个共轭点B,B的坐标分别为3,3,3,3.········5分12(2)由(1)知,B3,3,B3,3,1222所以BB=333326.··········································6分12设点Pxy,,Qxy,.ppqq22xypp1,124(xpxq)(xpxq)(ypyq)(ypyq)则,两式相减得0,········7分22xyqq1241124yypq1又PQ∥OA,所以,····························································8分xx3pqyyxxpqpq故yy()xx,则,pqpq22高三数学参考答案及评分细则(第17页共21页)
所以线段PQ的中点在直线xy0上,即线段PQ被BB平分.···················9分12设点Pxy,到xy0的距离为d,pp1则点B,P,B,Q所围成四边形面积S=2S2BBd26d,12四边形BPBQ1△PBB12212············································································································10分设过P与直线xy0平行的直线l为xym,当l与M相切时,d取得最大值.xym,22由xy22,消去y得4x6mx3m40,112422令36mm4840,解得m4,············································11分4所以d22,max2故点B,P,B,Q所围成四边形面积的最大值为83.·························12分12解法二、(1)略,同解法一.(2)由(1)知,B3,3,B3,3,12设点Pxy,,Qxy,.ppqq1由PQ∥OA,得直线PQ的斜率为,·····················································6分31故设直线PQ的方程为yxt,31yxt,322联立,消去y得,4x6tx9t360,································7分22xy112444222由36t436(t4)36(163)t0,解得33t,33312且xxt,xx(9t36),·····················································8分pqpq24122103221所以PQ1()xx(tt)4936pq3924102163t.······································································9分2设B3,3,B3,3到直线PQ的距离分别为d,d.1212高三数学参考答案及评分细则(第18页共21页)
3t43433t则d,d,12101044433tt43383由33t,得dd12.······················10分33101010所以四边形BPBQ面积等于1211SPQdPQdBPBQ1212221PQd()d122110283163t2210223163t···········································································11分故当t0时,S取得最大值83,BPBQ12即点B,P,B,Q所围成封闭图形面积的最大值为83.······················12分1222.(12分)2设函数fx()axlnxx.(1)当a1时,判断fx()的单调性;(2)若函数fx()的图象与x轴没有公共点,求a的取值范围.【考查意图】本小题主要考查函数的单调性、方程有解、导数的应用等基础知识;考查抽象概括能力、推理论证能力、运算求解能力与创新意识,考查函数与方程思想、化归与转化思想、分类与整合思想、数形结合思想、有限与无限思想;考查数学抽象、直观想象、逻辑推理、数学运算等核心素养,体现综合性、应用性与创新性.满分12分.2【解】解法一、(1)当a1时,fx()xlnxxx0,·····················1分12x22x12xx1xx121所以fx()2x1.··············2分xxxx当01x时,fx()0,所以fx()在(0,1)单调递增;·······························3分当x1时,fx()0,所以fx()在(1,)单调递减.···································4分(2)因为函数fx()的图象与x轴没有公共点,所以fx()0恒成立.2若fx()0有解,则关于x的方程axlnxxx0有解,lnxx等价于关于x的方程ax0有解.·············································6分2xlnxx1xx2ln令px()x0,则px(),·······································7分23xx高三数学参考答案及评分细则(第19页共21页)
2令qx()1x2lnxx0,则qx()10恒成立,xqx()在(0,)上单调递减,又q(1)0,当01x时,qxq(1)0;当x1时,qxq(1)0;························8分所以,当01x时,px0;当x1时,px0;px()在(0,1)单调递增,在(1,)上单调递减,px()p(1)1,·············································································9分max当x0且x0时,px;当x1时,px0;·························10分若直线ya与函数px()的图象有交点,则a1,即a1,········································································11分要使函数fx()的图象与x轴没有公共点,则a的取值范围为,1.··········12分解法二、(1)略,同解法一;2(2)因为fx()axlnxxx0,212axx1所以fx()2ax1.·····················································5分xx①当a0时,fx()0,11所以fx()在0,单调递增,且ff()10,(e)1e0,ee所以函数fx()有唯一的一个零点,这与fx()的图象与x轴没有公共点相矛盾,所以a0;······························6分②当a0时,fx()0,所以fx()在(0,)单调递增;111111(ⅰ)当a1时,f()alnlna122aeaeeaeaeae11≤10,e2e又因为fa(1)10,所以函数fx()有唯一的一个零点,这与fx()的图象与x轴没有公共点相矛盾,所以a1不成立;······················7分22(ⅱ)当01a时,fx()axlnxxxlnxx,2令hx()xlnxx.1111fh()()10,fa(1)10,eee2e所以函数fx()有唯一的一个零点,高三数学参考答案及评分细则(第20页共21页)
这与fx()的图象与x轴没有公共点相矛盾,所以01a不成立;·················8分2(ⅲ)当a0时,方程2axx10有两根x1,x2,不妨设xx12,1xx120,2a因为所以xx120,1xx120,2a所以,当0xx2时,fx()0;当xx2时,fx()0;所以fx()在(0,x2)上单调递增,在(,x2)上单调递减,所以fx()在xx2处取到唯一的极大值,即函数fx()的最大值为fx()2,且22ax22x10.························································································9分2xx2211fx()2ax2lnx2x2lnx2x2lnx2.222x1设ux()lnx,则ux()在(0,)单调递增,且u(1)0,22当x(0,1)时,ux()0;当x(1,)时,ux()0;即x2(0,1)时,fx()02;当x2(1,)时,fx()02;1aa111由于f()ln10,eee22eee所以x2(1,)时,fx()的图象与x轴有公共点,这与fx()的图象与x轴没有公共点相矛盾,所以x2(1,);·········································································10分故x2(0,1)时,fx()的最大值fx()2小于0,211又2ax2x210(0x21),即2ax2(021),x2x2111121因为()2,····················································11分xxx224222所以22a,即a1.要使函数fx()的图象与x轴没有公共点,则a的取值范围为,1.··········12分高三数学参考答案及评分细则(第21页共21页)
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)