首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
试卷
>
高中
>
数学
>
河南省部分名校2022-2023学年高一下学期6月月考数学试题(Word版附解析)
河南省部分名校2022-2023学年高一下学期6月月考数学试题(Word版附解析)
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/18
2
/18
剩余16页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
2022~2023年度下学年高一年级第三次联考数学注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.4.本试卷主要考试内容:人教A版必修第二册第六章至第九章9.1.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在以下调查中,适合用全面调查的是()A.调查一个地区糖尿病的发病率B.了解一批水稻种子的发芽率C.了解一个班级学生的身高情况D.了解某城市居民的生活水平【答案】C【解析】【分析】根据全面调查的定义可得出合适的选项.【详解】对于A选项,调查一个地区糖尿病的发病率,调查数量较多,不适合全面调查;对于B选项,了解一批水稻种子的发芽率,调查数目较多,且具有破坏性,不适合全面调查;对于C选项,了解一个班级学生的身高情况,适合全面调查;对于D选项,了解某城市居民的生活水平,调查数目较多,不适合全面调查.故选:C.2.若的面积等于,则()A.1B.2C.D.【答案】B【解析】【分析】直接根据三角形的面积公式和向量的数量积公式计算得到答案.【详解】,故,,即.故选:B.3.如图,在矩形中,,用斜二测画法画出的水平放置的矩形 的直观图为四边形,则四边形的周长为()A.10B.8C.7D.5【答案】C【解析】【分析】用斜二测画法画出的水平放置的矩形的直观图,得出边长,计算周长即可.【详解】用斜二测画法画出的水平放置的矩形的直观图,由斜二测画法,四边形是平行四边形,,所以四边形的周长为.故选:C.4.已知一组数据,,,,,的平均数为16,则另一组数据,,,,,的平均数为()A.7B.6C.5D.4【答案】C【解析】【分析】根据平均数的定义直接计算.【详解】由题意得,得,所以所求平均数为.故选:C 5.关于空间中两条不同的直线与两个不同的平面,下列说法正确的是()A.若,则B.若,则C.若,则D.若,则【答案】D【解析】【分析】由选项A的条件可得出则m,n可能平行、异面或相交,可判断A;由选项B的条件可得出,可以判断B选项;由选项C的条件可得出或相交,可判断C;根据线面垂直的性质可以判断D.【详解】若,则m,n可能平行、异面或相交,A错误;若,则,B错误;若,则的关系可能是或相交,C错误;,则,又,则,D正确.故选:D.6.在中,D是BC的中点,E是AD的中点,则()A.B.C.D.【答案】C【解析】【分析】直接利用向量的线性运算求出结果【详解】在中,D是BC的中点,E是AD的中点,则.故选:C.7.刍(chú)甍(méng )是中国古代算数中的一种几何体,是底面为矩形的屋脊状的楔体.现有一个刍甍如图所示,底面ABCD为矩形,平面,和是全等的正三角形,,,,为的重心,则过点,,的平面截该刍甍所得的截面周长为()A.11B.C.9D.【答案】A【解析】【分析】延长交于点,取中点,连接,,易得为的中点,即可得到过点,,的平面截该刍甍所得的截面为四边形,求出其周长即可得解.【详解】如图,延长交于点,取的中点,连接,,易得为的中点,∴,∵,∴,即过点,,的平面截该刍甍所得的截面为四边形,∵,,∴过点,,的平面截该刍甍所得的截面周长为.故选:A8.洛阳九龙鼎位于河南省洛阳市老城区中州东路与金业路交叉口,是一个九龙鼎花岗岩雕塑,代表东周、东汉、魏、西晋、北魏、隋、唐、后梁、后唐9个朝代在这里建都,是洛阳的一座标志性建筑,九条龙盘旋的大石柱的顶端,端放着一座按1:1比例仿制的中国青铜时代的象征——西周兽面纹方鼎,汉白玉护栏两侧分别镶嵌着两幅《太极河图》.如图,为了测量九龙鼎的高度,选取了与该鼎底在同一平面内的两个测量基点与,现测得,在点测得九龙鼎顶端的仰角为,在 点测得九龙鼎顶端的仰角为,则九龙鼎的高度()(参考数据:取)A.B.C.D.【答案】B【解析】【分析】设,,,在中,由余弦定理求解即可.【详解】设,由题意可得,由题意知:,在中,由余弦定理可得,得:,得:故选:B.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.若,则()A.的虚部为5B.为纯虚数C.为实数D.在复平面内对应的点位于第二象限【答案】BC【解析】【分析】利用复数的运算求出,即可判断A;利用纯虚数的概念可判断B,利用实数的概念可判断C;利用复数的几何表示可判断D.【详解】由题意得,所以的虚部为,故A错误; 为纯虚数,故B正确;为实数,故C正确;在复平面内对应的点为,位于第四象限,故D错误.故选:BC.10.若向量满足,则()A.B.C.D.【答案】ABD【解析】【分析】利用向量数量积的运算性质求解判断即可.【详解】由题意得,得,所以,故A正确;由,得,故B正确;因为,所以不垂直于,故C错误;,故D正确.故选:ABD.11.在等腰梯形ABCD中,,,,,以DE所在的直线为轴,其余四边旋转半周形成的面围成一个几何体,则()A.该几何体由半个圆柱和半个圆台组合而成B.该几何体高为2C.该几何体的体积为D.该几何体的表面积为【答案】BCD【解析】【分析】该几何体由半个圆锥和半个圆台组合而成,利用圆锥、圆台的表面积和体积公式求解即可.【详解】如图, 由题意可知,该几何体由半个圆锥和半个圆台组合而成,故A错误;因为,所以,又,,所以,因为,所以,即该几何体的高为2,故B正确所以该几何体的体积为,故C正确;表面积为,故D正确.故选:BCD12.如图,在正方体中,,点为线段上的一动点,则()A.三棱锥的体积为定值B.当时,直线与平面所成角的正切值为C.直线与直线所成角的余弦值可能为D.的最小值为【答案】ACD【解析】【分析】利用等体积法可知三棱锥的体积为定值,即A正确;由可得为的中点,利用线面角的定义可得直线与平面所成角的正切值为,即B错误;将直线平移可知当时,满足直线与直线所成角的余弦值为,即C正确;利用平面展开图和正方体的棱长即可求得的最小值为,可得D正确. 【详解】对于A,根据等体积法可知,点在线段上运动时,的面积为定值,,此时即为三棱锥的高,所以;即点在线段上运动时,三棱锥的体积为定值,即A正确;对于B,当时即可知,为线段中点,取的中点为,连接,如下图所示:易知,由正方体性质可得平面,所以可得平面;即直线与平面所成角的平面角即为,易知,且,所以,所以B错误;对于C,在上取一点,使,取中点为,连接,如下图所示:则可得,异面直线与直线所成的角的平面角即为,易知,所以可得,因此,若直线与直线所成角的余弦值为,即,可得; 又,可得符合题意;所以C正确;对于D,易知,所以,即当取最小时,的值最小;将正方体展开使得在同一平面内,如下图所示:易知,当且仅当三点共线时,取最小值,所以,即的最小值为,所以D正确.故选:ACD【点睛】方法点睛:在立体几何中求解距离最值问题时,往往利用平面展开图转化成平面距离最值问题,从而求得空间当中距离最值的问题.三、填空题:本题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.六一儿童节来临之际,某商场计划从8位男员工、16位女员工中选调6人加强前台服务工作,若按照性别进行分层随机抽样,则应抽取的女员工人数为______.【答案】4【解析】【分析】直接根据分层抽样的比例关系计算得到答案.【详解】应抽取的女员工人数为.故答案为:.14.已知,则__________.【答案】【解析】 【分析】设,则,由复数相等可求出,求出,再由复数的模长公式求解即可.【详解】设,则,所以,所以,则,,所以.故答案为:15.的内角的对边分别为,则__________,__________.【答案】①.4②.【解析】【分析】利用正弦定理求得,利用余弦定理求出.【详解】由正弦定理得,得.由余弦定理得,得.故答案为:4,.16.在正四棱柱中,分别为和的中点,则三棱锥外接球的表面积为__________.【答案】【解析】【分析】根据给定几何体,确定三棱锥外接球的球心,求出球半径即可计算作答.【详解】如图,取为的中点,连接EM,EB,EN,则四边形EBCN为矩形,故E,B,C,N四点共圆, 又,所以,即为直角三角形,又平面EMB,所以三棱锥外接球的球心即四边形EBCN的外心,即中点为球心,设三棱锥的外接球半径为,因为,所以,,即所求外接球的表面积.故答案为:.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知为抛物线的顶点,点与关于原点对称.(1)求线段的中点坐标;(2)求向量在上的投影向量的坐标.【答案】(1)(2)【解析】【分析】(1)利用配方法求得顶点坐标,进而得坐标,从而可得线段的中点坐标;(2)根据投影向量的概念求解.【小问1详解】由,得,则,所以线段AC的中点坐标为,即. 【小问2详解】由(1)得,所以向量在上的投影向量的坐标为.18.如图,在直角梯形中,为的中点,将沿着翻折,使与点重合,且.(1)证明:平面.(2)作出二面角的平面角,并求其大小.【答案】(1)证明见解析(2)平面角见解析,【解析】【分析】(1)确定四边形为平行四边形,得到,得到证明.(2)是中点,连接,,确定为二面角的平面角,再利用余弦定理计算得到答案.【小问1详解】,且,故四边形为平行四边形,故,平面,且平面,故平面.【小问2详解】如图所示:是中点,连接,,, 则,,故,即,故,平面平面,平面,平面,故为二面角的平面角,,,故.故二面角的平面角为.19.若复数,,且,求的取值范围.【答案】【解析】【分析】利用复数相等建立等式关系可得,分,讨论,结合同角三角函数关系即可确定其范围.【详解】由可得得,因为,所以,当时,;当时,.综上,的取值范围为.20.如图,在圆柱OP中,AB为底面圆O的一条直径,C为上更靠近A的三等分点,D为 上更靠近B的三等分点,C,D位于直径AB的两侧,直线l为平面PAC与平面PBD的交线.(1)证明:.(2)若,求A到平面PBD的距离.【答案】(1)证明见解析(2).【解析】【分析】(1)先利用线面平行的判定得平面PBD,再由线面平行的性质得;(2)由等积转化法求A到平面PBD的距离.【小问1详解】证明:如图,连接OC,OD.由题意得,∴,均为正三角形,∴,∴.∵平面PBD,平面PBD,∴平面PBD.又平面平面平面PAC,∴.【小问2详解】由题意得平面ABD,∴,,连接AD,∴,∴.设A到平面PBD的距离为h,易得,∵,∴. 21.在中,角所对的边分别为.(1)求的大小;(2)若,点满足,求的面积.【答案】(1)(2)【解析】【分析】(1)利用正弦定理化边为角,结合三角函数同角关系式求解;(2)由正弦定理得,由,可得,两边平方后结合数量积运算求得,利用三角形面积公式求得结果.【小问1详解】因为,所以,又,所以,结合,解得,因为,所以.【小问2详解】因为,所以.由,可得,则, 即,解得.所以的面积为.22.如图,在正三棱柱中,分别为的中点.(1)证明:平面平面.(2)若侧面的中心为为侧面内的一个动点,平面,且的轨迹长度为,求三棱柱的表面积.【答案】(1)证明见解析(2)【解析】【分析】(1)由题意可证得,,由线面垂直的判定定理可证得平面,再由面面垂直的判定定理即可证明平面平面.(2)连接交于,取的中点,过作,分别交于,连接,由面面平行的判定定理可证得平面平面,所以的轨迹为线段,再由相似比求出,即可求出三棱柱的表面积.【小问1详解】连接,因为所以侧面是正方形,所以,因为分别为的中点,所以,因为是正三角形,所以,因为平面,平面,, ,平面,所以平面,平面,所以,平面,所以平面,又因为平面,所以平面平面.【小问2详解】连接交于,取的中点,过作,分别交于,连接,易得,因为平面,平面,所以平面,平面,因为,且都在面OHG内,所以平面平面,所以的轨迹为线段,因为,所以,因为,所以,所以,故三棱柱的表面积为.
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
河南省部分名校2022-2023学年高一物理下学期第三次月考试题(Word版附解析)
河南省部分名校2022-2023学年高一化学下学期第三次月考试题(Word版附解析)
河南省部分名校2022-2023学年高一地理下学期第三次月考试题(Word版附解析)
河南省商丘市名校联考2022-2023学年高一语文下学期期末试题(Word版附解析)
河南省部分名校2022-2023学年高一语文上学期第一次阶段检测试题(Word版附解析)
河南省高中名校联考2022-2023学年高一语文下学期3月月考试题(Word版附解析)
河南省部分名校2022-2023学年高三语文上学期10月联考试题(Word版附解析)
河南省部分名校2022-2023学年高三语文下学期5月联考试题(Word版附解析)
河南省名校联盟2022-2023学年高一上学期期中语文试题(Word版附解析)
河南省名校联盟2022-2023学年高一上学期11月月考语文试题(Word版附解析)
文档下载
收藏
所属:
高中 - 数学
发布时间:2024-01-15 03:55:01
页数:18
价格:¥2
大小:2.88 MB
文章作者:随遇而安
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划