首页

突破新高考数学精选压轴题 第15讲 设点设线技巧之设点技巧归纳总结(原卷版)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/7

2/7

剩余5页未读,查看更多内容需下载

第15讲设点设线技巧之设点技巧归纳总结一.解答题(共19小题)1.如图,已知抛物线的焦点为,过点的直线交抛物线于、两点,点在抛物线上,使得的重心在轴上,直线交轴于点,且在点右侧.记,的面积为,.(1)若直线的斜率为,求以线段为直径的圆的面积;(2)求的最小值及此时点的坐标.2.如图,已知点为抛物线的焦点.过点的直线交抛物线于,两点,点在抛物线上,使得的重心在轴上,直线交轴于点,且在点的右侧.记,的面积分别为,.(Ⅰ)求的值及抛物线的准线方程;(Ⅱ)求的最小值及此时点的坐标.3.已知椭圆的右焦点为,短轴长为.(1)求椭圆的方程;,(2)设为椭圆的右顶点,过点的直线与交于、两点(均异于,直线、分别交直线于、两点,证明:、两点的纵坐标之积为定值,并求出该定值;(3)记以坐标原点为顶点、为焦点的抛物线为,如图,过点的直线与交于、两点,点在上,并使得的重心在轴上,直线交轴于点,且在的右侧,设、的面积分别为、,是否存在锐角,使得成立?请说明理由.4.已知双曲线的焦距为,其中一条渐近线的方程为.以双曲线的实轴为长轴,虚轴为短轴的椭圆记为,过原点的动直线与椭圆交于、两点.(Ⅰ)求椭圆的方程;(Ⅱ)若点为椭圆的左顶点,,求的取值范围;(Ⅲ)若点满足,求证为定值.5.已知椭圆的左右焦点分别为、,且经过点,为椭圆上的动点,以为圆心,为半径作圆.(1)求椭圆的方程;(2)若圆与轴有两个交点,求点横坐标的取值范围.6.已知椭圆的左、右焦点分别为,,且椭圆上的点满足,.(1)求椭圆的标准方程;(2)作直线垂直于轴,交椭圆于点,,点是椭圆上异于,两点的任意一,点,直线,分别与轴交于,两点,判断是否为定值,若是,求出该定值;若不是,请说明理由.7.已知椭圆的左右焦点坐标为,且椭圆经过点.(1)求椭圆的标准方程;(2)设点是椭圆上位于第一象限内的动点,,分别为椭圆的左顶点和下顶点,直线与轴交于点,直线与轴交于点,求四边形的面积.8.在平面直角坐标系中,椭圆过点,.(1)求椭圆的方程;(2)点,是单位圆上的任意一点,设,,是椭圆上异于顶点的三点且满足,求证:直线与的斜率乘积为定值.9.在平面直角坐标系中,椭圆过点,.(1)求椭圆的方程;(2)点,是单位圆上的任意一点,设,,是椭圆上异于顶点的三点且满足,探讨是否为定值?若是定值,求出该定值;若不是定值,请说明理由.10.定义:在平面内,点到曲线上的点的距离的最小值称为点到曲线的距离.在平,面直角坐标系中,已知圆及点,动点到圆的距离与到点的距离相等,记点的轨迹为曲线.(Ⅰ)求曲线的方程;(Ⅱ)过原点的直线不与坐标轴重合)与曲线交于不同的两点,,点在曲线上,且,直线与轴交于点,设直线,的斜率分别为,,求.11.已知椭圆的离心率为,且过点,动直线交椭圆于不同的两点,,且为坐标原点)(1)求椭圆的方程.(2)讨论是否为定值.若为定值,求出该定值,若不是,请说明理由.12.已知,分别是椭圆的左、右焦点,,分别为椭圆的上、下顶点,到直线的距离为.(Ⅰ)求椭圆的方程;(Ⅱ)过的直线交椭圆于,两点,求的取值范围;(Ⅲ)过椭圆的右顶点的直线与椭圆交于点(点异于点,与轴交于点(点异于坐标原点,直线与交于点.证明:为定值.13.已知椭圆经过点,且离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)若直线与曲线相交于异于点的两点、,且直线与直线的斜率之和为,则直线是否过定点?若是,求出该定点;若不是,说明理由.14.如图,在平面直角坐标系中,椭圆的离心率为,直线上的点和椭圆上点的最小距离为1.(1)求椭圆的方程;(2)已知椭圆的上顶点为,点,是上的不同于的两点,且点,关于原点对称,直线,分别交直线于点,.记直线与的斜率分别为,.①求证:为定值;②求的面积的最小值.,15.在平面直角坐标系中,如图,已知椭圆的左、右顶点为、,右焦点为.设过点的直线、与椭圆分别交于点,、,,其中,,.(1)设动点满足,求点的轨迹;(2)设,,求点的坐标;(3)设,求证:直线必过轴上的一定点(其坐标与无关).16.已知是椭圆的左顶点,斜率为的直线交于、两点,点在上,且.(1)当时,求的面积;(2)当时,求的值.17.已知椭圆的离心率为,右焦点.过点作斜率为的直线,交椭圆于、两点,是一个定点.如图所示,连、,分别交椭圆于、两点(不同于、,记直线的斜率为.(Ⅰ)求椭圆的方程;(Ⅱ)在直线的斜率变化的过程中,是否存在一个常数,使得恒成立?若存在,求出这个常数;若不存在,请说明理由.,18.已知椭圆的离心率为,半焦距为,且,经过椭圆的左焦点斜率为的直线与椭圆交于、两点,为坐标原点.(1)求椭圆的标准方程;(2)设,延长,分别与椭圆交于、两点,直线的斜率为,求的值及直线所经过的定点坐标.19.已知椭圆的离心率为,以的四个顶点为顶点的四边形的面积为.(Ⅰ)求椭圆的方程;(Ⅱ)设,分别为椭圆的左、右顶点,是直线上不同于点的任意一点,若直线,分别与椭圆相交于异于,的点、,试探究,点是否在以为直径的圆内?证明你的结论.,

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2023-12-25 14:30:03 页数:7
价格:¥3 大小:774.50 KB
文章作者:180****8757

推荐特供

MORE