首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
二轮专题
>
突破新高考数学精选压轴题 第15讲 设点设线技巧之设点技巧归纳总结(原卷版)
突破新高考数学精选压轴题 第15讲 设点设线技巧之设点技巧归纳总结(原卷版)
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/7
2
/7
剩余5页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
第15讲设点设线技巧之设点技巧归纳总结一.解答题(共19小题)1.如图,已知抛物线的焦点为,过点的直线交抛物线于、两点,点在抛物线上,使得的重心在轴上,直线交轴于点,且在点右侧.记,的面积为,.(1)若直线的斜率为,求以线段为直径的圆的面积;(2)求的最小值及此时点的坐标.2.如图,已知点为抛物线的焦点.过点的直线交抛物线于,两点,点在抛物线上,使得的重心在轴上,直线交轴于点,且在点的右侧.记,的面积分别为,.(Ⅰ)求的值及抛物线的准线方程;(Ⅱ)求的最小值及此时点的坐标.3.已知椭圆的右焦点为,短轴长为.(1)求椭圆的方程;,(2)设为椭圆的右顶点,过点的直线与交于、两点(均异于,直线、分别交直线于、两点,证明:、两点的纵坐标之积为定值,并求出该定值;(3)记以坐标原点为顶点、为焦点的抛物线为,如图,过点的直线与交于、两点,点在上,并使得的重心在轴上,直线交轴于点,且在的右侧,设、的面积分别为、,是否存在锐角,使得成立?请说明理由.4.已知双曲线的焦距为,其中一条渐近线的方程为.以双曲线的实轴为长轴,虚轴为短轴的椭圆记为,过原点的动直线与椭圆交于、两点.(Ⅰ)求椭圆的方程;(Ⅱ)若点为椭圆的左顶点,,求的取值范围;(Ⅲ)若点满足,求证为定值.5.已知椭圆的左右焦点分别为、,且经过点,为椭圆上的动点,以为圆心,为半径作圆.(1)求椭圆的方程;(2)若圆与轴有两个交点,求点横坐标的取值范围.6.已知椭圆的左、右焦点分别为,,且椭圆上的点满足,.(1)求椭圆的标准方程;(2)作直线垂直于轴,交椭圆于点,,点是椭圆上异于,两点的任意一,点,直线,分别与轴交于,两点,判断是否为定值,若是,求出该定值;若不是,请说明理由.7.已知椭圆的左右焦点坐标为,且椭圆经过点.(1)求椭圆的标准方程;(2)设点是椭圆上位于第一象限内的动点,,分别为椭圆的左顶点和下顶点,直线与轴交于点,直线与轴交于点,求四边形的面积.8.在平面直角坐标系中,椭圆过点,.(1)求椭圆的方程;(2)点,是单位圆上的任意一点,设,,是椭圆上异于顶点的三点且满足,求证:直线与的斜率乘积为定值.9.在平面直角坐标系中,椭圆过点,.(1)求椭圆的方程;(2)点,是单位圆上的任意一点,设,,是椭圆上异于顶点的三点且满足,探讨是否为定值?若是定值,求出该定值;若不是定值,请说明理由.10.定义:在平面内,点到曲线上的点的距离的最小值称为点到曲线的距离.在平,面直角坐标系中,已知圆及点,动点到圆的距离与到点的距离相等,记点的轨迹为曲线.(Ⅰ)求曲线的方程;(Ⅱ)过原点的直线不与坐标轴重合)与曲线交于不同的两点,,点在曲线上,且,直线与轴交于点,设直线,的斜率分别为,,求.11.已知椭圆的离心率为,且过点,动直线交椭圆于不同的两点,,且为坐标原点)(1)求椭圆的方程.(2)讨论是否为定值.若为定值,求出该定值,若不是,请说明理由.12.已知,分别是椭圆的左、右焦点,,分别为椭圆的上、下顶点,到直线的距离为.(Ⅰ)求椭圆的方程;(Ⅱ)过的直线交椭圆于,两点,求的取值范围;(Ⅲ)过椭圆的右顶点的直线与椭圆交于点(点异于点,与轴交于点(点异于坐标原点,直线与交于点.证明:为定值.13.已知椭圆经过点,且离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)若直线与曲线相交于异于点的两点、,且直线与直线的斜率之和为,则直线是否过定点?若是,求出该定点;若不是,说明理由.14.如图,在平面直角坐标系中,椭圆的离心率为,直线上的点和椭圆上点的最小距离为1.(1)求椭圆的方程;(2)已知椭圆的上顶点为,点,是上的不同于的两点,且点,关于原点对称,直线,分别交直线于点,.记直线与的斜率分别为,.①求证:为定值;②求的面积的最小值.,15.在平面直角坐标系中,如图,已知椭圆的左、右顶点为、,右焦点为.设过点的直线、与椭圆分别交于点,、,,其中,,.(1)设动点满足,求点的轨迹;(2)设,,求点的坐标;(3)设,求证:直线必过轴上的一定点(其坐标与无关).16.已知是椭圆的左顶点,斜率为的直线交于、两点,点在上,且.(1)当时,求的面积;(2)当时,求的值.17.已知椭圆的离心率为,右焦点.过点作斜率为的直线,交椭圆于、两点,是一个定点.如图所示,连、,分别交椭圆于、两点(不同于、,记直线的斜率为.(Ⅰ)求椭圆的方程;(Ⅱ)在直线的斜率变化的过程中,是否存在一个常数,使得恒成立?若存在,求出这个常数;若不存在,请说明理由.,18.已知椭圆的离心率为,半焦距为,且,经过椭圆的左焦点斜率为的直线与椭圆交于、两点,为坐标原点.(1)求椭圆的标准方程;(2)设,延长,分别与椭圆交于、两点,直线的斜率为,求的值及直线所经过的定点坐标.19.已知椭圆的离心率为,以的四个顶点为顶点的四边形的面积为.(Ⅰ)求椭圆的方程;(Ⅱ)设,分别为椭圆的左、右顶点,是直线上不同于点的任意一点,若直线,分别与椭圆相交于异于,的点、,试探究,点是否在以为直径的圆内?证明你的结论.,
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
突破新高考数学精选压轴题 第3讲 圆锥曲线第三定义(原卷版)
突破新高考数学精选压轴题 第6讲 破解离心率问题之建立齐次式和几何化(原卷版)
突破新高考数学精选压轴题 第7讲 破解离心率问题之焦点弦公式和焦半径公式(原卷版)
突破新高考数学精选压轴题 第8讲 破解离心率问题之椭双共焦定理(原卷版)
突破新高考数学精选压轴题 第9讲 破解离心率问题之顶底角公式(原卷版)
突破新高考数学精选压轴题 第10讲 几何法秒解离心率问题(原卷版)
突破新高考数学精选压轴题 第11讲 坐标法秒解离心率问题(原卷版)
突破新高考数学精选压轴题 第14讲 设点设线技巧之设线技巧归纳总结(解析版)
突破新高考数学精选压轴题 第14讲 设点设线技巧之设线技巧归纳总结(原卷版)
突破新高考数学精选压轴题 第15讲 设点设线技巧之设点技巧归纳总结(解析版)
文档下载
收藏
所属:
高考 - 二轮专题
发布时间:2023-12-25 14:30:03
页数:7
价格:¥3
大小:774.50 KB
文章作者:180****8757
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划