首页

突破新高考数学精选压轴题 第6讲 破解离心率问题之建立齐次式和几何化(原卷版)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/6

2/6

剩余4页未读,查看更多内容需下载

第6讲破解离心率问题之建立齐次式和几何化一.选择题(共9小题)1.如图,在平面直角坐标系中,是椭圆的右焦点,直线与椭圆交于,两点,且,则该椭圆的离心率为  A.B.C.D.2.如图,在平面直角坐标系中,椭圆的左、右焦点分别为,,为椭圆上一点(在轴上方),连结并延长交椭圆于另一点,且,若垂直于轴,则椭圆的离心率为  A.B.C.D.3.设,分别是双曲线的左、右焦点.圆与双曲线的右支交于点,且,则双曲线离心率为  A.B.C.D.4.如图,,分别是双曲线的左、右焦点,点是双曲线与圆在第二象限的一个交点,点在双曲线上,且,则双曲线的离心率为  ,A.B.C.D.5.设圆锥曲线的两个焦点分别为,.若曲线上存在点满足,则曲线的离心率等于  A.或B.或C.2或D.或6.设,分别是椭圆的左、右焦点,轴,若,,成等差数列,则椭圆的离心率为  A.B.C.D.7.如图,,分别是双曲线的左、右焦点,点是双曲线与圆在第二象限的一个交点,点在双曲线上,且,则双曲线的离心率为  A.B.C.D.8.如图,已知双曲线上有一点,它关于原点的对称点为,点为双曲线的右焦点,且满足,设,且,则该双曲线离心率的取值范围为  ,A.B.C.D.9.已知在菱形中,,曲线是以,为焦点,且经过,两点的椭圆,其离心率为;曲线是以,为焦点,渐近线分别和,平行的双曲线,其离心率为,则  A.B.C.1D.二.多选题(共1小题)10.已知椭圆,双曲线.若双曲线的两条渐近线与椭圆的四个交点及椭圆的两个焦点恰为一个正六边形的顶点,下列结论正确的是  A.椭圆的离心率B.双曲线的离心率C.椭圆上不存在点使得D.双曲线上存在点使得三.填空题(共9小题)11.已知椭圆,双曲线.若双曲线的两条渐近线与椭圆的四个交点及椭圆的两个焦点恰为一个正六边形的顶点,则椭圆与双曲线的离心率之积为  .12.如图,在平面直角坐标系中,,,,为椭圆的四个顶点,为其右焦点,直线与直线相交于点,线段与椭圆的交点为,且则该椭圆的离心率为  .,13.如图,在平面直角坐标系中,已知,,分别为椭圆的右、下、上顶点,是椭圆的右焦点.若,则椭圆的离心率是  .14.如图,在平面直角坐标系中,为椭圆的右焦点,,分别为椭圆的上、下顶点,直线与椭圆的另一个交点为,且直线的斜率为,则该椭圆的离心率为  .15.如图,在平面直角坐标系中,点位椭圆的左顶点,点、在椭圆上,若四边形为平行四边形,且,则椭圆的离心率等于  .16.已知,分别是双曲线的左、右焦点,过的直线与圆,相切,且与双曲线的两渐近线分别交于点,,若,则该双曲线的离心率为  .17.已知,分别是双曲线的左、右焦点,是双曲线的半焦距,点是圆上一点,线段交双曲线的右支于点,且有,,则双曲线的离心率是  .18.设圆锥曲线的两个焦点分别为,,若曲线上存在点满足,则曲线的离心率等于  .19.已知双曲线右支上有一点,它关于原点的对称点为,双曲线的右焦点为,满足,且,则双曲线的离心率的值是  .,

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2023-12-25 11:20:02 页数:6
价格:¥3 大小:545.63 KB
文章作者:180****8757

推荐特供

MORE