首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
初中
>
数学
>
北师大版(2012)
>
九年级上册
>
第二章 一元二次方程
>
*5 一元二次方程的根与系数的关系
>
第二章一元二次方程5一元二次方程的根与系数的关系教案(北师大版九年级上册)
第二章一元二次方程5一元二次方程的根与系数的关系教案(北师大版九年级上册)
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/4
2
/4
剩余2页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
*5一元二次方程的根与系数的关系1.掌握一元二次方程根与系数的关系,会运用关系定理求已知一元二次方程的两根之和及两根之积,并会解一些简单的问题.2.经历一元二次方程根与系数关系的探究过程,培养学生的观察思考、归纳概括能力,解决问题的能力,渗透整体的数学思想、求简思想.3.通过学生自己探究,发现根与系数的关系,增强学习的信心,培养科学探究精神.【教学重点】根与系数的关系及运用.【教学难点】定理的发现及运用.一、情境导入,初步认识我们知道生活中许多事物存在着一定的规律,有人发现并验证后就得到伟大的定理,而我们数学学科中更蕴藏着大量的规律.那么一元二次方程中是否也存在什么规律呢?今天我们共同去探究,感受一次当科学家的滋味.【教学说明】让学生感受到数学和其他学科一样,里边有很多有价值的规律,等待我们去探索,激发学生的学习兴趣、探究欲望.二、思考探究,获取新知解下列方程,将得到的解填入下面的表格中,观察表中x1+x2,x1·x2的值,它们与对应的一元二次方程的各项系数之间有什么关系?从中你能发现什么规律?【教学说明】通过学生计算一些特殊的一元二次方程的两根之和与两根之积,引导学生从中发现存在的一般规律,渗透特殊到一般的思考方法.4 【归纳总结】一般地,对于关于x的一元二次方程ax2+bx+c=0(a≠0),用求根公式求出它的两个根x1、x2,由一元二次方程ax2+bx+c=0的求根公式知x1=,x2=,能得出以下结果:x1+x2=-,x1·x2=.【教学说明】让学生自己发现规律,找到成功感,再从理论上加以验证,让学生经历从特殊到一般的科学探究过程.三、运用新知,深化理解1.求下列方程的两根之和与两根之积.(1)x2-6x-15=0;(2)5x-1=4x2;(3)x2=4;(4)2x2=3x.2.已知关于x的方程x2-2(k-1)x+k2=0有两个实数根x1,x2.(1)求k的取值范围;(2)若|x1+x2|=x1x2-1,求k的值.【教学说明】让学生初步学会运用根与系数的关系来求两根和与两根积.3.已知方程5x2+kx-6=0的一个根为2,求它的另一个根及k的值;解:设方程的另一个根是x1,那么2x1=∴x1=又x1+2=∴k=-74.利用根与系数的关系,求一元二次方程2x2+3x-1=0的两个根的(1)平方和;(2)倒数和.解:设方程的两个根分别为x1,x2,那么x1+x2=,x1x2=.4 (1)∵(x1+x2)2=x12+2x1·x2+x22,∴x12+x22=(x1+x2)2-2x1·x2=13/4(2)=35.已知关于x的方程x2-(k+1)x+1/4k2+1=0,且方程两实根的积为5,求k的值.解:∵方程两实根的积为5∴得.∴当k=4时,方程两实根的积为5.6.已知关于x的一元二次方程x2+2(k-1)x+k2-1=0有两个不相等的实数根.(1)求实数k的取值范围;(2)0可能是方程的一个根吗?若是,请求出它的另一个根;若不是,请说明理由.解:(1)Δ=[2(k-1)]2-4(k2-1)=4k2-8k+4-4k2+4=-8k+8.∵原方程有两个不相等的实数根,∴-8k+8>0,解得k<1,即实数k的取值范围是k<1.(2)假设0是方程的一个根,则代入得02+2(k-1)·0+k2-1=0,解得k=-1或k=1(舍去).即当k=-1时,0就为原方程的一个根.此时,原方程变为x2-4x=0,解得x1=0,x2=4,所以它的另一个根是4.【教学说明】目的是考察学生灵活运用知识解决问题的能力,让学生了解到根与系数的关系在解题中的运用,同时也考察学生思维的严密性.四、师生互动,课堂小结不解方程,根据一元二次方程根与系数的关系和已知条件结合,可求得一些代数式的值;求得方程的另一根和方程中的待定系数的值:(1)先化成一般形式,再确定a,b,c.(2)当且仅当b2-4ac≥0时,才能应用根与系数的关系.(3)要注意符号:两个根的和是前面有负号,两个根的积是前面没有负号.让学生谈谈本节课的收获与体会,教师可适当引导和点拨.4 1.布置作业:教材“习题2.8”中第2、3题.2.完成练习册中相应练习.此节课在研究方程的根与系数关系时,先从具体例子观察、归纳其规律,并且先从二次项系数是1的方程入手,然后提出二次项系数不是1的方程,由此,猜想一般的一元二次方程的根与系数的关系,最后对此猜想的正确性作出证明.这个全过程对培养学生正确的思考方法很有价值.4
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
《一元二次方程根与系数的关系》
21.2.4 一元二次方程的根与系数的关系
17.4一元二次方程的根与系数的关系课件
17.4一元二次方程的根与系数的关系教案
第二章一元二次方程2.5一元二次方程的根与系数的关系课件(北师大版)
21.2.4 一元二次方程的根与系数的关系课件
第二章一元二次方程2.5一元二次方程的根与系数的关系教案(北师大版九上)
21.2.4 一元二次方程的根与系数的关系导学案
21.2.4 一元二次方程的根与系数的关系课件
第二章一元二次方程5一元二次方程的根与系数的关系课件(北师大版九年级上册)
文档下载
收藏
所属:
初中 - 数学
发布时间:2023-11-23 06:05:02
页数:4
价格:¥1
大小:229.00 KB
文章作者:随遇而安
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划