首页

第4章图形的认识4.3角4.3.2角的度量与计算第2课时余角与补角教案(湘教版七上)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/4

2/4

剩余2页未读,查看更多内容需下载

第2课时余角与补角1.认识一个角的余角和补角,掌握余角和补角的性质.2.进一步提高学生的抽象概括能力,知识运用能力,学会简单的逻辑推理,并能对问题的结论进行合理的猜想.3.体会观察、归纳、推理对数学知识及获取数学猜想和论证的重要作用,了解数学中推理的严谨性和结论的确定性,能在独立思考和小组交流中获益.【教学重点】余角、补角的定义及性质.【教学难点】余角、补角性质的合情推理和数学语言的规范表达.一、情景导入,初步认知计算:(1)44°+46°(2)30°20′34″+59°39′26″(3)10°+25°+55°(4)96°+84°(5)58°45′+121°15′(6)50°+75°+55°学生计算并回答,总结它们的特点.【教学说明】通过计算复习上节课的知识,设置悬念,调动学生的积极性,更进一步促使学生寻求到答案,同时也为判断余角和补角做铺垫.二、思考探究,获取新知1.做一做:如图,量一量、算一算,∠1+∠2,∠3+∠4的度数分别是多少?【归纳结论】如果两个角的和是90°,那么这两个角互为余角,其中一个角是另一个角的余角.如果两个角的和是180°,那么这两个角互为补角,其中一个角是另一个角的补角.【教学说明】让学生通过观察、度量、计算从直观的角度去感受互为余角、补角的概念.并用语言去表达这个概念,培养口语表达能力.4 2.探究:(1)如图,∠1与∠2互补,∠1与∠3互补,那么∠2与∠3的大小有什么关系?(2)如图,∠4与∠5互余,∠4与∠6互余,那么∠5与∠6的大小有什么关系?【归纳结论】同角(或等角)的补角相等.同角(或等角)的余角相等.【教学说明】提高学生的抽象概括能力,知识运用能力,学会简单的逻辑推理.三、运用新知,深化理解1.教材P128例4,教材P129页例5.2.如果一个角的补角是120°,则这个角的余角是(D)A.150°B.90°C.60°D.30°3.已知∠α小于90°,∠α与∠β互补,∠α与∠γ互余,则∠β-∠γ的值等于(C)A.45°B.60°C.90°D.180°4.如果∠1和∠2互余,∠1和∠3互补,∠2和∠3的和等于平角的23,则∠1,∠2,∠3的大小分别是(C)A.50°,40°,90°B.70°,20°,110°C.75°,15°,105°D.80°,10°,100°5.∠α的补角比∠α的余角的2倍大40°,则∠α=.答案:40°6.已知∠1=2∠2,∠1的余角的3倍等于∠2的补角,则∠1=,∠2=.答案:36°18°7.已知一个角的余角比这个角的补角的12小12°,求这个角的余角和补角的度数.解:设这个角为x°,则它的余角为(90-x)°,补角为(180-x)°.根据题意,得90-x=12(180-x)-12,解得x=24.所以90-x=66,180-x=156,4 即这个角的余角和补角的度数分别为66°,156°.8.如图,已知直线AB和CD相交于点O,OM平分∠BOD,ON⊥OM,∠AOC=50°.(1)求∠AON的度数;(2)写出∠DON的余角.解:(1)因为直线AB和CD相交于点O,所以∠BOD=∠AOC=50°.因为OM平分∠BOD,所以∠BOM=12∠BOD=12×50°=25°.因为ON⊥OM,所以∠NOM=90°,所以∠BON=∠BOM+∠MON=25°+90°=115°.所以∠AON=180°-∠BON=180°-115°=65°.(2)图中与∠DON互余的角是∠DOM和∠MOB.9.按如图所示的方法折纸,然后回答问题:(1)∠2是多少度的角?为什么?(2)∠1与∠3有何关系?(3)∠1与∠AEC,∠3和∠BEF分别有何关系?解:(1)∠2=90°.因为折叠,则∠1与∠3的和与∠2相等,而将这三个角加起来,正好是平角∠BEC,所以∠2=12×180°=90°.(2)因为∠1与∠3的和与∠2相等,且三个角加起来恰好是一个平角,所以∠1+∠3=90°,所以∠1与∠3互余.(3)因为∠1与∠AEC的和为180°,∠3与∠BEF的和为180°,所以∠1与∠AEC互补,∠3与∠BEF互补.【教学说明】巩固所学的知识,拓展学生思维.最后一题让学生完成由特殊到一般的探究和演绎推理.四、师生互动、课堂小结4 先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题4.3”中第6、7、8题.在本节课中要求有一半多的同学能回答老师所设的问题.在练习中,要求学生能够通过实践得出结论,有些同学也可通过简单推理得出结论,这是两个不同层次的要求,设计中真正体现面向全体学生,使不同的人在数学上得到不同的发展的理念.在教学中重视学生知识的形成过程,重视让学生自己发现、获取知识,如在推导“同角(等角)的补角相等和同角(等角)的余角相等”的性质时,充分放手给学生,让学生自己得出结论,体验到探究的乐趣.最后在课堂末时,引导学生探究“一个角的补角比它的余角大多少”的活动,让学生体验探究过程,掌握从特殊到一般的探究方法.4

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2023-10-19 21:15:01 页数:4
价格:¥1 大小:182.50 KB
文章作者:随遇而安

推荐特供

MORE