首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
二轮专题
>
新高考数学题型全归纳之排列组合专题15 隔板法模型(解析版)
新高考数学题型全归纳之排列组合专题15 隔板法模型(解析版)
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/9
2
/9
剩余7页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
专题15隔板法模型例1.2020年高考强基计划中,北京大学给了我校10个推荐名额,现准备将这10个推荐名额分配给高三理科的6个班级,这6个班级每班至少要给一个名额,则关于分配方案的种数为()A.462B.126C.210D.132【解析】将10个名额分为6份,即从9个分段中选择5个段分开,且不分顺序,共有种方案.故选:B.例2.不定方程的非负整数解的个数为()A.B.C.D.【解析】不定方程的非负整数解的个数将个相同小球放入三个盒子,允许有空盒的放法种数.现在在每个盒子里各加一个相同的小球,问题等价于将个相同小球放入三个盒子,没有空盒的放法种数,则只需在个小球中形成的空位(不包含两端)中插入两块板即可,因此,不定方程的非负整数解的个数为.故选:C.例3.有30个完全相同的苹果,分给4个不同的小朋友,每个小朋友至少分得4个苹果,问有多少种不同的分配方案?()A.680B.816C.1360D.1456【解析】先给每个小朋友分三个苹果,剩余个苹果利用“隔板法”,个苹果有个空,插入三个“板”,共有680种方法.故选:A.例4.从、、、4个班级中选10人组成卫生检查小组,每班至少选一人,每班人数的不同情况有多少种()A.42B.56C.84D.1689 【解析】将10个人排成一排,然后从中间形成的9个空中选3个,分别放入一个隔板,即可将10个人分为4个部分,且每部分至少1个人,由此可得每班人数的不同情况有种.故选C.例5.把9个完全相同的口罩分给6名同学,每人至少一个,不同的分法有()种A.41B.56C.156D.252【解析】问题可转化为将9个完全相同的口罩排成一列,再分成6堆,每堆至少一个,求其方法数.事实上,只需在上述9个完全相同的口罩所产生的8个“空档”中选出5个“空档”插入档板,即产生符合要求的方法数.故有种.故选:B例6.方程的正整数解共有()组A.165B.120C.38D.35【解析】如图,将12个完全相同的球排成一列,在它们之间形成的11个空隙中任选三个插入三块隔板,把球分成四组,每一种分法所得球的数目依次是、、、,显然满足,故是方程的一组解,反之,方程的每一组解都对应着一种在12个球中插入隔板的方式,故方程的正整数解的数目为:,故选:A.例7.把16个相同的小球放到三个编号为1,2,3的盒子中,且每个盒子内的小球数要多于盒子的编号数,则共有多少种放法()A.18B.28C.36D.42【解析】9 根据题意,个相同的小球放到三个编号为的盒子中,且每个盒子内的小球数要多于盒子的编号数,先在号盒子里放个球,在号盒子里放个球,在号盒子里放个球,则原问题可以转化为将剩下的个小球,放入个盒子,每个盒子至少放个的问题,将剩下的个球排成一排,有个空位,在个空位中任选个,插入挡板,有种不同的放法,即有个不同的符合题意的放法;故选:C.例8.把座位号为、、、、、的六张电影票全部分给甲、乙、丙、丁四个人,每人至少一张,且分给同一人的多张票必须连号,那么不同的分法种数为()A.B.C.D.【解析】因为每人至少一张,且分给同一人的多张票必须连号,又分给甲、乙、丙、丁四个人,则在座位号、、、、、的五个空位插3个板子,有种,然后再分给甲、乙、丙、丁四个人,有种,所以不同的分法种数为,故选:B例9.(1)把6个不同的小球放入4个不同的箱子中,每个箱子都不空,共有多少种放法?(2)把6个不同的小球放入4个相同的箱子中,每个箱子都不空,共有多少种放法?(3)把6个相同的小球放入4个不同的箱子中,每个箱子都不空,共有多少种放法?(4)把6个相同的小球放入4个相同的箱子中,每个箱子都不空,共有多少种放法?【解析】(1)6个不同的小球放入4个不同的箱子,每个箱子至少一个小球,先把6个小球分组,有两种分法:2、2、1、1;3、1、1、1;再放入4个不同的箱子,故不同的方法共有(种)(2)6个不同的小球放入4个不同的箱子,每个箱子至少一个小球,先把6个小球分组,有两种分法:2、2、1、1;3、1、1、1;再放入4个相同的箱子,故不同的方法共有(种)9 (3)6个相同的小球放入4个不同的箱子,每个箱子至少一个小球,则采用插板法,在个空中插入块板,则不同的方法共有(种)(4)把6个相同的小球放入4个相同的箱子中,每个箱子至少一个小球,故可以首先每个箱子放入个小球,还剩下个小球,则这个小球,只有两种结果,即两个在一个箱子中,或两个小球分别在一个箱子中,故只有种放法.例10.(1)求方程的非负整数解的个数;(2)某火车站共设有4个“安检”入口,每个入口每次只能进1个旅客求—个小组4人进站的不同方案种数,要求写出计算过程.【解析】(1)若定义,其中,则是从方程的非负整数解集到方程的正整数解集的映射,利用隔板法得,方程正整数解得个数是从而方程的非负整数解得个数也是56;(2)这4名旅客通过安检口有4种情况:从1个安检口通过,从2个安检口通过,从3个安检口通过,从4个安检口通过。从1个安检口通过共有:种方案;从2个安检口通过,可能有1个安检口通过1人,另一个安检口通过3人有:种方案;从2个安检口通过,可能每一个安检口都通过2人有:种方案;从3个安检口通过,可能有2个安检口各通过1人,有1个安检口通过2人有:种方案;从4个安检口通过共有:种方案,所以这4个旅客进站的不同方案有:种.例11.现有本书和位同学,将书全部分给这三位同学.(1)若本书完全相同,每个同学至少有一本书,共有多少种分法?(2)若本书都不相同,共有多少种分法?(3)若本书都不相同,每个同学至少有一本书,共有多少种分法?9 【解析】(1)根据题意,若本书完全相同,将本书排成一排,中间有个空位可用,在个空位中任选个,插入挡板,有种情况,即有种不同的分法;(2)根据题意,若本书都不相同,每本书可以分给人中任意1人,都有3种分法,则5本不同的书有种;(3)根据题意,分2步进行分析:①将本书分成组,若分成1、1、3的三组,有种分组方法,若分成1、2、2的三组,有种分组方法,则有种分组方法;②将分好的三组全排列,对应名学生,有种情况,则有种分法.例12.(1)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有几种?(2)把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有几种?(3)四个不同的小球放入编号为1,2,3,4的四个盒子中,恰有一个空盒,共有多少种放法?(注:最后结果需用数字作答)【解析】(1)按照最左端排谁分两类:①排甲:其余5个人作全排列,有种,②排乙:最右端不排甲有种,其余四人作全排列有种,故共有种,由分类计数原理共有种;(2)分步完成:①将A,B捆在一起当作一个元素与除C的3个元素一起作全排列,有种,9 ②将C插入到已经排好的排列中,让A,C不相邻,有种,由分步计数原理可得共有种;(3)四个不同的小球编号为1,2,3,4的四个盒子中,恰有一个空盒,说明恰有一个盒子中有2个小球,从4个小球中选两个作为一个元素,同另外两个元素在三个位置全排列,有种不同的放法.例13.将6个相同的小球放入4个不同的盒子中,要求不出现空盒,共有_________种放法.(用数字作答)【解析】根据题意,将6个小球排成一排,排好后有5个可用的空位,在5个空位中任选3个,插入挡板,共有种情况,可以将6个小球分成4组,依次放入4个不同的盒子中即可,所以共有10中不同的放法.例14.方程的正整数解的个数__________.【解析】问题中的看作是三个盒子,问题则转化为把个球放在三个不同的盒子里,有多少种方法.将个球排一排后,中间插入两块隔板将它们分成三堆球,使每一堆至少一个球.隔板不能相邻,也不能放在两端,只能放在中间的个空内.共有种.故答案为:例15.现有15个省三好学生名额分给1、2、3、4共四个班级,其中1班至少2个名额,2班、4班每班至少3个名额,3班最多2个名额,则共有_________种不同分配方案.【解析】由3班最多2个名额,3班有2、或1个,或0个名额三种情况.(1)、当3班有2个名额时,先给1班1个名额,2班、4班各2个名额,然后将剩下的8个名额分给1班、2班和4班,每个班至少一个名额.相当于将8个元素排成一排,在中间加入2个隔板将他们分成3组,1班、2班和4班分别得到一组,有种分法.(2)、当3班有1个名额时,先给1班1个名额,2班、4班各2个名额,然后将剩下的9个名额分给1班、2班和4班,每个班至少一个名额.9 相当于将9个元素排成一排,在中间加入2个隔板将他们分成3组,1班、2班和4班分别得到一组,有种分法.(3)、当3班没有分得名额时,先给1班1个名额,2班、4班各2个名额,然后将剩下的10个名额分给1班、2班和4班,每个班至少一个名额.相当于将10个元素排成一排,在中间加入2个隔板将他们分成3组,1班、2班和4班分别得到一组,有种分法.所以一共有种不同的分配方案.故答案为:85.例16.小红同学去超市买糖果,现有四种不同口味的糖果可供选择(可以有糖果不被选择),单价均为一元一颗,小红只有7元钱且要求全部花完,则不同的选购方法共有______种.【解析】把7元看作7个相同的小球,四种糖果看作是四个盒子,问题变为把7个小球放到4个盒子中,允许有空盒,因此补充4个小球,共11个小球,分到四个盒子中,用插隔板方法,共有方法数为.故答案为:120.例17.10个相同的小球放在三个编号为1,2,3的盒中,每盒至少1个,有_________种方分法.【解析】依据题意,10个相同的小球放在3个盒中,每盒至少1个,可转化为将10个相同小球分成三组,每组至少1个;可将10个小球排成一列,进而在排除两端的9个空位中,选取2个,插入隔板即可,由组合公式可得共有种分法.故答案为:.例18.将3个1,11个0排成一列,使得每两个1之间至少隔着两个0,则共有__________种不同的排法.【解析】解:符合条件的排列中,3个1将11个0分成四段,设每一段分别有个0,则,,,且,9 令,,则.因此原问题等价于求方程的自然数解的组数,将7个1与3块隔板进行排列,其排列数即对应方程自然数解的组数,所以方程共有组自然数解,故共有120种不同的排法.故答案为:120例19.24个志愿者名额分给3个学校,则每个学校至少有1个名额且学校名额互不相同的分法有________种.【解析】设分配给3个学校的名额数分别为x1,x2,x3,则每校至少有一个名额的分法数为不定方程x1+x2+x3=24的正整数解的组数,用隔板原理知有=253种.又在“每校至少有一个名额的分法”中要排除“至少有两个学校的名额数相同”的分配方法:只有两校人数相同,设为(i,i,24-2i),由题意有i=1,2,3,4,5,6,7,9,10,11共3×10种情况;三校人数都相同的只有(8,8,8)这1种.综上可知,满足条件的分配方法共有253-31=222种.故答案为:222例20.在5月6日返校体检中,学号为()的五位同学的体重增加量是集合中的元素,并满足,则这五位同学的体重增加量所有可能的情况有________种【解析】当五位同学的体重增加量是1个数字时,有种情况;当五位同学的体重增加量是2个不同数字时,有种情况(类似隔板法,把五个同学按照的顺序排好,他们之间有4个空,从4个空里选1个空放隔板把他们分隔成两个部分,有种方法,再从69 个体重增加量的集合里选两个数给他们,有种方法,即此时有种方法,下面操作方法都相同.);当五位同学的体重增加量是3个不同数字时,有种情况;当五位同学的体重增加量是4个不同数字时,有种情况;当五位同学的体重增加量是5个不同数字时,有种情况.所以共有种不同的方法.故答案为:2529
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
新高考数学题型全归纳之排列组合新高考数学题型全归纳之排列组合专题01 两个计数原理(解析版)
新高考数学题型全归纳之排列组合专题08 直接法模型(解析版)
新高考数学题型全归纳之排列组合专题08 直接法模型(原卷版)
新高考数学题型全归纳之排列组合专题09 间接法模型(解析版)
新高考数学题型全归纳之排列组合专题09 间接法模型(原卷版)
新高考数学题型全归纳之排列组合专题12 插空法模型(解析版)
新高考数学题型全归纳之排列组合专题12 插空法模型(原卷版)
新高考数学题型全归纳之排列组合专题13 捆绑法模型(解析版)
新高考数学题型全归纳之排列组合专题13 捆绑法模型(原卷版)
新高考数学题型全归纳之排列组合专题14 分配问题(解析版)
文档下载
收藏
所属:
高考 - 二轮专题
发布时间:2023-08-25 07:39:01
页数:9
价格:¥6
大小:279.87 KB
文章作者:180****8757
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划