首页

第24章圆24.2圆的基本性质第1课时圆的有关概念以及点与圆的位置关系课件(沪科版九下)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/18

2/18

3/18

4/18

剩余14页未读,查看更多内容需下载

第1课时圆的有关概念以及点与圆的位置关系24.2圆的基本性质 新课导入圆这些图片中都有哪种图形? 如图,在平面内,线段OP绕它固定的一个端点O旋转一周,则另一个端点P所形成的封闭曲线叫做圆.·rOP固定的端点O叫做圆心;线段OP叫做半径;以点O为圆心的圆,记作⊙O,读作“圆O”.圆的概念 问题1:圆上各点到定点(圆心O)的距离有什么规律?问题2:到定点的距离等于定长的点又有什么特点?·rOA思考 因此,圆可以看成:平面内到定点(圆心O)的距离等于定长(半径r)的所有点组成的图形.·rOA r·COABOC>r观察图中点A,B,C与圆的位置关系.设⊙O半径为r,说出A,B,C到圆心O的距离与半径的关系:点C在圆外点A在圆内点B在圆上OA<rOB=r 设⊙O的半径为r,点P到圆心的距离OP=d,则有:r·OA反过来,已知点到圆心的距离和圆的半径,能否判断点和圆的位置关系?PPPd=rd>rd<r点P在圆内点P在圆上点P在圆外 设⊙O的半径为r,点到圆心的距离为d,则点和圆的位置关系点在圆内d﹤r点在圆上点在圆外d=rd>r●●●●O位置关系数量关系符号“”读作“等价于”,它表示符号“”的左右两端可以互相推出. 练习已知⊙O的直径为3cm,点P到圆心O的距离OP=4cm,则点P(  )A.在⊙O外B.在⊙O上C.在⊙O内D.不能确定A 经过圆心的弦叫做直径,如图中的AB.连接圆上任意两点的线段叫做弦,如图中的AC.弦和直径的定义COAB半径是弦吗? 圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.COAB圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作AB,读作“弧AB”.弧半圆 劣弧与优弧小于半圆的弧(如图中的)叫做劣弧.AC大于半圆的弧(用三个字母表示,如图中的)叫做优弧.ABCCOAB在同圆或等圆中,能重合的弧叫等弧. 练习下列说法中,正确的是()A.等弦所对的弧相等B.等弧所对的弦相等C.圆心角相等,所对的弦相等D.弦相等所对的圆心角相等B 例1已知:如图,AB,CD为⊙O的直径.求证:AD∥CB.ABCDO证明连接AC,DB.∵AB,CD为⊙O的直径.∴OA=OB,OC=OD.∴四边形ADBC为平行四边形.∴AD∥CB. 1.下列说法正确的是()A.直径是弦,弦是直径B.半圆是弧,弧是半圆C.弦是圆上两点之间的部分D.半径不是弦,直径是最长的弦D随堂练习 2.下列说法中,不正确的是()A.过圆心的弦是圆的直径B.等弧的长度一定相等C.周长相等的两个圆是等圆D.长度相等的两条弧是等弧D 3.已知:如图,在⊙O中,AB为弦,C、D两点在AB上,且AC=BD.求证:OC=OD.证明:∵OA、OB为⊙O的半径,∴OA=OB.∴∠A=∠B.又∵AC=BD,∴△ACO≌△BDO.∴OC=OD. 课后小结圆的基本概念圆的定义与圆有关的概念形成性定义:集合性定义:弦:直径:圆弧(弧):半圆:等圆、等弧:优弧、劣弧:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆.圆心为O、半径为r的圆可以看成是平面内所有到定点O的距离等于定长r的点的集合.连接圆上任意两点的线段叫做弦.直径是经过圆心的弦,是圆中最长的弦.圆上任意两点间的部分叫做圆弧,简称弧.圆的任意一条直径的两个端点把圆分成两条弧,每条弧都叫做半圆.能够重合的两个圆叫做等圆,在同圆或等圆中,能够互相重合的弧叫做等弧.大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2023-08-22 21:03:01 页数:18
价格:¥2 大小:734.55 KB
文章作者:随遇而安

推荐特供

MORE