首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
模拟考试
>
广东省广州市普通高中2022-2023学年高三数学下学期第二次综合测试(二模)试卷(Word版附解析)
广东省广州市普通高中2022-2023学年高三数学下学期第二次综合测试(二模)试卷(Word版附解析)
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/27
2
/27
剩余25页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
秘密★启用前试卷类型:B2023年广州市普通高中毕业班综合测试(二)数学本试卷共5页,22小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上.用2B铅笔在答题卡的相应位置填涂考生号.2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液.不按以上要求作答无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若为实数,且,则()A.2B.1C.D.【答案】C【解析】【分析】由题意得出,计算即可得解.【详解】由题意得,,故选:C.2.已知集合,,则集合的元素个数为()A.B.C.D.【答案】B【解析】【分析】利用交集的定义求出集合,即可得解. 【详解】因为,,则,故集合的元素个数为.故选:B.3.已知两个非零向量,满足,,则()A.B.C.D.【答案】D【解析】【分析】根据向量的数量积运算律和夹角公式求解.【详解】因为,所以,所以,所以,,故选:D.4.已知,,,则()A.B.C.D.【答案】D【解析】【分析】根据指数函数,幂函数的性质即可判断,,再对,进行取对数,结合对数函数的性质即可判断,进而即可得到答案.【详解】由,,,则,,又,,则,即,所以.故选:D. 5.木升在古代多用来盛装粮食作物,是农家必备的用具,如图为一升制木升,某同学制作了一个高为40的正四棱台木升模型,已知该正四棱台的所有顶点都在一个半径为50的球O的球面上,且一个底而的中心与球O的球心重合,则该正四棱台的侧面与底面所成二面角的正弦值为()A.B.C.D.【答案】A【解析】【分析】根据正四棱台的外接球的性质可得两底面的边长,进而根据直角三角形的边角关系,结合二面角的定义即可求解.【详解】如图:正四棱台,由题意可知:是底面正方形的中心也是球O的球心,且,所以,进而可得取的中点为,过的中点作,连接,所以,,故,在直角三角形中,故,由于,所以即为正四棱台的侧面与底面所成二面角,故正弦值为,故选:A 6.已知椭圆C:(),过点且方向向量为的光线,经直线反射后过C的右焦点,则C的离心率为()A.B.C.D.【答案】A【解析】【分析】设过点且方向向量为的光线,经直线的点为,右焦点为C,根据方向向量的直线斜率为,结合反射的性质可得,再结合等腰直角三角形的性质列式求解即可.【详解】设过点且方向向量为的光线,经直线的点为,右焦点为C.因为方向向量的直线斜率为,则,,又由反射光的性质可得,故,所以为等腰直角三角形,且到的距离为,又,故,,则,故,离心率.故选:A7.已知函数,若恒成立,且,则的单调递增区间为()A.()B.()C.()D.()【答案】D【解析】【分析】根据恒成立,可得,再结合,求得,再根据正弦函数的单调性结合整体思想即可得解.【详解】因为恒成立, 所以,即,所以或,所以或,当时,,则,与题意矛盾,当时,,符合题意,所以,所以,令,得,所以的单调递增区间为().故选:D8.已知偶函数与其导函数的定义域均为,且也是偶函数,若,则实数的取值范围是()A.B.C.D.【答案】B【解析】【分析】由偶函数的定义结合导数可得出,由已知可得出 ,可求出的表达式,利用导数分析函数的单调性,可知函数在上为增函数,再由可得出,可得出关于实数的不等式,解之即可.【详解】因为为偶函数,则,等式两边求导可得,①因为函数为偶函数,则,②联立①②可得,令,则,且不恒为零,所以,函数在上为增函数,即函数在上为增函数,故当时,,所以,函数在上为增函数,由可得,所以,,整理可得,解得.故选:B.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.有3台车床加工同一型号的零件,第1台加工的次品率为8%,第2台加工的次品率为3%,第3台加工的次品率为2%,加工出来的零件混放在一起.已知第1,2,3台车床加工的零件数分别占总数的10%,40%,50%,从混放的零件中任取一个零件,则下列结论正确的是()A.该零件是第1台车床加工出来的次品的概率为0.08B.该零件是次品的概率为0.03C.如果该零件是第3台车床加工出来的,那么它不是次品的概率为0.98D.如果该零件是次品,那么它不是第3台车床加工出来的概率为【答案】BC【解析】【分析】利用乘法公式、互斥事件加法求概率即可判断A,B;利用条件概率公式、对立事件即可判断C,D. 【详解】记事件:车床加工的零件为次品,记事件:第台车床加工的零件,则,,,,,,对于,任取一个零件是第1台生产出来的次品概率为,故A错误;对于,任取一个零件是次品的概率为,故B正确;对于,如果该零件是第3台车床加工出来的,那么它不是次品的概率为,故C正确;对于,如果该零件是次品,那么它不是第3台车床加工出来的概率为,故D错误.故选:BC.10.已知函数定义域是(,),值域为,则满足条件的整数对可以是()A.B.C.D.【答案】ACD【解析】【分析】由是偶函数及图像可得出结论.【详解】显然是偶函数,其图像如下图所示: 要使值域为,且,,则,;,;,.故选:ACD.11.已知双曲线的左,右焦点分别为、,过的直线与双曲线的右支交于点、,与双曲线的渐近线交于点、(、在第一象限,、在第四象限),为坐标原点,则下列结论正确的是()A.若轴,则的周长为B.若直线交双曲线的左支于点,则C.面积的最小值为D.的取值范围为【答案】BD【解析】【分析】利用双曲线的定义可判断A选项;利用平行四边形的几何性质可判断B选项;设直线的方程为,求出、,利用三角形的面积公式结合二次函数的基本性质可判断C选项;由双曲线的定义,求出关于的函数关系式,利用函数的单调性可求得的取值范围,可判断D选项.【详解】双曲线的标准方程为,则,易知点、,双曲线的渐近线方程为.对于A选项,当轴,直线的方程为, 联立,可得,此时,,则,此时,的周长为,A错;对于B选项,因为双曲线关于原点对称,则点关于原点的对称点也在双曲线上,因为若直线交双曲线的左支于点,则点、关于原点对称,即、的中点均为原点,故四边形为平行四边形,所以,,即,B对;对于C选项,易知的方程为,的方程为,所以,,因为直线与双曲线的右支交于点、,则直线不与轴重合,设直线的方程为,设点、,联立可得,则,解得,由韦达定理可得,,可得,联立可得,即点,联立可得,,即点,所以,,,所以,,当且仅当时,等号成立,C错;对于D选项,, 当时,,当时,,因为函数在上单调递减,此时,当时,因为函数在上单调递减,此时,综上所述,的取值范围是,D对.故选:BD.【点睛】方法点睛:圆锥曲线中取值范围问题的五种求解策略:(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新的参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围;(4)利用已知的不等关系建立不等式,从而求出参数的取值范围;(5)利用求函数值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围12.已知正四面体的棱长为2,点,分别为和的重心,为线段上一点,则下列结论正确的是()A.若取得最小值,则B.若,则平面C.若平面,则三棱锥外接球的表面积为D.直线到平面的距离为【答案】BCD【解析】 【分析】将正四面体放入正方体中,建立空间直角坐标系,对每个选项逐一分析即可.【详解】将正四面体放入正方体中,以点为原点,以,,所在直线为轴,轴,轴,如图所示,因为正四面体的长为2,所以正方体的棱长为,则,,,因为点,分别为和重心,所以点的坐标为,点的坐标为所以设,则,所以,所以,,对于A:因为, ,所以,当时,即,,取得最小值,故A错误;对于B:若,则,所以,因为,,设平面的一个法向量为,则,取,则,因为,所以平面,即平面,故B正确;对于C:若平面,则,即,,即,设平面的一个法向量为,因为,,则,取,则,因为,所以平面,则三棱锥外接球的球心在直线上,又因为点为等边三角形的重心,所以点为等边三角形的外心,外接圆半径为,设三棱锥外接球的半径为, 则,即,解得,所以三棱锥P-ABC外接球的表面积为,故C选项正确;对于D:因为点的坐标为,点的坐标为,所以,设平面的一个法向量为,因为,,所以,取,则,因为,且直线平面,所以直线平面,所以点到平面的距离就是直线到平面的距离,则点到平面的距离,即直线到平面的距离为,故D正确,故选:BCD.三、填空题:本题共4小题,每小题5分,共20分.13.某班有48名学生,一次考试的数学成绩X(单位:分)服从正态分布,且成绩在上的学生人数为16,则成绩在90分以上的学生人数为____________.【答案】8【解析】【分析】根据正态分布的对称性即可求解.【详解】由X(单位:分)服从正态分布,知正态密度曲线的对称轴为,成绩在上的学生人数为16,由对称性知成绩在80分上的学生人数为24人,所以90分以上的学生人数为. 故答案为:814.已知,的展开式中存在常数项,写出n的一个值为____________.【答案】3(答案不唯一)【解析】【分析】在二项展开式的通项公式中,令的幂指数等于0,求出与的关系,可得的值.【详解】二项式的展开式的通项为,因为二项式的展开式中存在常数项,所以有解,即,可得n的一个值为3.故答案为:3(答案不唯一)15.在数列中,,,若,则正整数____________.【答案】10【解析】【分析】根据题意,令,判断数列是等差数列,从而求得通项公式,进而代入求解即可.【详解】由,,令,则,所以数列是以2为首项,2为公差的等差数列,即,又为正整数,所以,即,解得或(舍去).故答案为:10.16.在平面直角坐标系中,定义为,两点之间的“折线距离”.已知点,动点P满足,点M是曲线上任意一点,则点P的轨迹所围成图形的面积为___________,的最小值为___________【答案】①.##0.5②. 【解析】【分析】作出平面区域并计算平面区域的面积;设,,显然,,,求的最小值,即的最小值,的最大值,令,对函数求导,得到单调性,可求出最值,即可求出的最小值.【详解】设,,当时,则,即,当时,则,即,当时,则,即当时,则,即,故点P的轨迹所围成图形如下图阴影部分四边形的面积:则.如下图,设,,显然,,,求的最小值,即的最小值,的最大值,又,下面求的最小值,令,,即,令,解得:,令,解得:,所以在上单调递减,在上单调递增, 所以时,有最小值,且,所以.故答案为:;.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.设是数列的前n项和,已知,.(1)求,;(2)令,求.【答案】(1)(2)【解析】【分析】(1)根据递推关系即可联立求解,(2)根据偶数项和奇数项的关系可得,进而根据分组求和即可.【小问1详解】由得即,即,又,所以,【小问2详解】当时,,当时,, 两式相加可得,得,由于,所以18.一企业生产某种产品,通过加大技术创新投入降低了每件产品成本,为了调查年技术创新投入(单位:千万元)对每件产品成本(单位:元)的影响,对近年的年技术创新投入和每件产品成本的数据进行分析,得到如下散点图,并计算得:,,,,.(1)根据散点图可知,可用函数模型拟合与的关系,试建立关于的回归方程;(2)已知该产品的年销售额(单位:千万元)与每件产品成本的关系为.该企业的年投入成本除了年技术创新投入,还要投入其他成本千万元,根据(1)的结果回答:当年技术创新投入为何值时,年利润的预报值最大?(注:年利润=年销售额一年投入成本)参考公式:对于一组数据、、、,其回归直线的斜率和截距的最小乘 估计分别为:,.【答案】(1)(2)当年技术创新投入为千万元时,年利润的预报值取最大值【解析】【分析】(1)令,可得出关于的线性回归方程为,利用最小二乘法可求出、的值,即可得出关于的回归方程;(2)由可得,可计算出年利润关于的函数关系式,结合二次函数的基本性质可求得的最小值及其对应的值.【小问1详解】解:令,则关于的线性回归方程为,由题意可得,,则,所以,关于的回归方程为.【小问2详解】解:由可得,年利润,当时,年利润取得最大值,此时,所以,当年技术创新投入为千万元时,年利润的预报值取最大值.19.记的内角、、的对边分别为、、,已知. (1)求;(2)若点在边上,且,,求.【答案】(1)(2)【解析】【分析】(1)由余弦定理化简可得出,可求出的值,再结合角的取值范围可求得角的值;(2)求出、的值,设,则,分别在和中,利用正弦定理结合等式的性质可得出、的等式,即可求得的值,即为所求.【小问1详解】解:因为,由余弦定理可得,化简可得,由余弦定理可得,因为,所以,.【小问2详解】解:因为,则为锐角,所以,,因为,所以,,所以,,设,则, 在和中,由正弦定理得,,因为,上面两个等式相除可得,得,即,所以,.20.如图,在直三棱柱中,,点D是的中点,点E在上,平面.(1)求证:平面平面;(2)当三棱锥的体积最大时,求直线与平面所成角的正弦值.【答案】(1)证明见解析(2)【解析】【分析】(1)取中点,连接、,由三角形的中位线定理可得,进而由直三棱柱可得,所以平面,再由平面,得,再由线面垂直的性质可得平面,从而推出平面,再由面面垂直的性质即可证明;(2)由(1)知平面,当三棱锥的体积最大时,设出 ,结合立体几何的体积公式,和基本不等式可求出,建立空间直角坐标系,写出相关点的坐标,求出直线的方向向量与平面的法向量,利用向量的夹角公式,结合向量的夹角与线面角的关系,即可求解.【小问1详解】取中点,连接、,如图所示:,点是中点,,又是的中点,,又在直三棱柱中,有,平面,平面,平面,且面,平面平面,,平面,且平面,,又,且、平面,平面,又,平面,平面, 面平面.【小问2详解】由(1)知平面,则,设,则,,,,由基本不等式知,当且仅当时等号成立,即三棱锥的体积最大,此时,以为坐标原点,所在直线为轴,所在直线为轴,所在直线为轴建立空间直角坐标系,如图所示:则有,,,,,,,,设平面的一个法向量为,则有,取,解得,设直线与平面所成的角为,, 故直线与平面所成角的正弦值为.21.已知点,P为平面内一动点,以为直径的圆与y轴相切,点P的轨迹记为C.(1)求C的方程;(2)过点F的直线l与C交于A,B两点,过点A且垂直于l的直线交x轴于点M,过点B且垂直于l的直线交x轴于点N.当四边形的面积最小时,求l的方程.【答案】(1)(2)或【解析】【小问1详解】设,则以为直径的圆的圆心为,根据圆与y轴相切,可得,化简得,所以C的方程为【小问2详解】由题意可知:直线的斜率存在且不为0,设直线:,,联立,所以,设直线的倾斜角为,则所以,所以,由题意可知四边形为梯形,所以, 设,则,所以,当单调递增,当单调递减,所以当时,即时,面积最小,此时,故直线的方程为:,即或【点睛】方法点睛:圆锥曲线中的范围或最值问题,可根据题意构造关于参数的目标函数,然后根据题目中给出的范围或由判别式得到的范围求解,解题中注意函数单调性和基本不等式的作用.必要时也可以利用导数求解最值.另外在解析几何中还要注意向量的应用.22.已知函数,.(1)当时,,求实数的取值范围;(2)已知,证明:.【答案】(1)(2)证明见解析【解析】【分析】(1)证明出,在时,可得出,在时,,分析可知,综合可得出实数的取值范围;(2)由(1)变形可得,令,可得出,可得出,,证明出,可得出 ,,利用不等式的基本性质可证得结论成立.【小问1详解】解:令,则,当时,,则函数在上单调递增,当时,,则函数在上单调递减,所以,,即,所以,当时,,即,当时,取,由于,而,得,故,不合乎题意.综上所述,.【小问2详解】证明:当时,由(1)可得,则,可得,即,即,令,所以,,所以,,即,所以,,,令,则,且不恒为零,所以,函数上单调递增,故,则,所以,,,所以,.【点睛】方法点睛:利用导数证明不等式问题,方法如下: (1)直接构造函数法:证明不等式(或)转化为证明(或),进而构造辅助函数;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
广东省广州市天河区普通高中2022届高三物理毕业班综合测试(一模)试题(Word版附答案)
广东省广州市天河区普通高中2022届高三毕业班综合测试(一模)数学试题 Word版含答案
广东省广州市2022届高三地理下学期综合测试二(二模)(Word版附答案)
广东省广州市2022届高三生物下学期综合测试二(二模)(Word版附答案)
广东省广州市2022届高三数学下学期综合测试二(二模)(Word版附解析)
广东省广州市2022届高三英语下学期综合测试二(二模)(Word版附答案)
广东省 2022-2023学年高三英语上学期综合测试(一)试卷(Word版附解析)
广东省广州市 2022-2023学年高三物理上学期第二次月考试卷(Word版附解析)
广东省广州市2022-2023学年高三语文上学期12月调研试卷(Word版附解析)
广东省广州市天河区2023届高三数学二模试题(Word版附解析)
文档下载
收藏
所属:
高考 - 模拟考试
发布时间:2023-04-28 06:40:03
页数:27
价格:¥3
大小:1.75 MB
文章作者:随遇而安
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划