首页

江苏省镇江第一中学2021-2022学年高二数学下学期期末试题(Word版附解析)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/25

2/25

剩余23页未读,查看更多内容需下载

高二年级期末考试数学试题一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1设,则()A.B.C.D.【答案】B【解析】【分析】首先解一元二次不等式求出集合,再根据补集、交集的定义计算可得;【详解】解:由,即,解得,所以,又,所以,所以;故选:B2.设命题甲:,命题乙:直线与直线平行,则()A.甲是乙的充分不必要条件B.甲是乙的必要不充分条件C.甲是乙的充要条件D.甲是乙的既不充分也不必要条件【答案】A【解析】【分析】根据充分条件和必要条件的定义,结合两直线平行的性质进行求解即可.【详解】当时,直线的方程为,直线方程为,此时,直线与直线平行,即甲乙;直线和直线平行,则,解得或,即乙甲;则甲是乙的充分不必要条件. 故选:.3.已知数列满足,且,则数列的前四项和的值为()A.B.C.D.【答案】C【解析】【分析】由题意是首项为2、公比为的等比数列,利用等比数列前n项和公式求的值.【详解】由题设是首项为2、公比为的等比数列,即,所以.故选:C4.从中任取2个不同的数,则的概率是()A.B.C.D.【答案】B【解析】【分析】列举从中任取2个不同的数的所有结果,共6个基本事件,符合条件的共2个基本事件,结合古典概型计算结果.【详解】从中任取2个不同的数,共有个基本事件,取出的2个数之差的绝对值为4有个基本事件,所以所求概率为故选:B.5.已知P是圆上的动点,,,则的面积的最大值为() A.2B.4C.6D.【答案】C【解析】【分析】根据题意,由A、B的坐标可得直线AB的方程以及的值,由圆的方程分析圆心与半径,求出圆心到直线AB的距离,分析可得圆上的动点P到直线AB的距离最大值,由三角形面积公式计算可得答案.【详解】解:根据题意,点,则直线AB的方程为,即,且圆,即,其圆心为,半径,所以圆心到直线AB距离则圆上的动点P到直线AB的距离最大值为,面积的最大值;故选:C.6.的展开式中的系数为()A.88B.104C.D.【答案】D【解析】【分析】分别求、的二项式展开式通项、,可得原式的通项,结合指定项的指数值求m、n,进而求该项的系数.【详解】由题设,的通项为,的通项为;∴原多项式的展开式通项可写为, ∴,可得或或,∴的系数为.故选:D.【点睛】关键点点睛:将原式分成两个二项式分别求通项,结合指定项未知数的指数值求参数,进而求该项的系数.7.若函数有两个极值点,则实数的取值范围是()A.B.C.D.【答案】B【解析】【分析】根据题意,可令,化简得,令,然后做出的图象,即可判断的范围【详解】由已知,,令,可得,当时,方程无解,所以,,可得,令, 当时,,单增,当时,,单减,当时,,单减作出的图象,,因为函数有两个极值点,即方程有两个变号的实根,即与有两个交点,所以,由图可得,故选:B8.在抛物线型内壁光滑的容器内放一个球,其通过中心轴的纵剖面图如图所示,圆心在y轴上,抛物线顶点在坐标原点,已知抛物线方程是x2=4y,圆的半径为r,若圆的大小变化时,圆上的点无法触及抛物线的顶点O,则圆的半径r的取值范围是()A.(2,+∞)B.(1,+∞)C.D.[1,+∞)【答案】A【解析】【分析】设圆心为,(),半径为,是抛物线上任一点,求出,当的最小值在原点处取得时,圆过原点,可得此时圆半径的范围,半径不在这个范围内的圆不过原点.【详解】设圆心为,(),半径为,是抛物线上任一点,,若的最小值不在处取得,则圆不过原点, 所以,即,此时圆半径为.因此当时,圆无法触及抛物线的顶点.故选:A.二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项待合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分)9.已知数列的前项和为,,则下列选项中正确的是()A.B.C.数列是等比数列D.数列的前项和为【答案】ACD【解析】【分析】根据转化到,进而可知数列是以为首项,公比为的等比数列,并写出通项公式及求和公式,即可判断选项正误.【详解】解:,①,②两式作差得:,,,,即,,.数列是以为首项,公比为的等比数列,则,.由上述内容可知,选项A,C正确.当时,,则选项B错误. ,,,数列是首项为的等比数列.则数列的前项和为,则选项D正确.故选:ACD.10.下列命题中,正确命题的序号为()A.已知随机变量服从二项分布,若,则B.将一组数据中的每个数据都加上同一个常数后,方差恒不变C.设随机变量服从正态分布,若,则D.某人在次射击中,击中目标的次数为,且,则当时概率最大【答案】BCD【解析】【分析】对A:利用二项分布的期望与方差公式,列出方程求解即可判断;对B:根据方差公式可知方差恒不变;对C:根据正态分布的对称性即可求解;对D:根据二项分布概率的性质求解即可判断.【详解】解:对A:因为随机变量服从二项分布,,,所以,,解得,故选项A错误;对B:根据方差公式,为常数),可得将一组数据中的每个数据都加上同一个常数后,方差不变,故选项B正确;对C:因为随机变量服从正态分布,由,可得,利用正态分布的对称性可得,故选项C正确;对D:因为在10次射击中,击中目标的次数满足,所以对应的概率, 当,时,,令,解得,因为时,所以当时,概率最大,故选项D正确.故选:BCD.11.已知椭圆的左,右焦点分别为,椭圆的上顶点和右顶点分别为A,B.若P,Q两点都在椭圆C上,且P,Q关于坐标原点对称,则()A.|PQ|的最大值为B.为定值C.椭圆上不存在点M,使得D.若点P在第一象限,则四边形APBQ面积的最大值为【答案】BD【解析】【分析】A.由|PQ|的最大值为长轴长判断;B.由椭圆的定义判断;C.由判断;D.分别求得P,Q到直线AB的距离最大值判断.【详解】如图所示: A.|PQ|的最大值为长轴长2,故错误;B.易知是平行四边形,则,因为,所以,故正确;C.因为,所以,则,故椭圆上存在点M,使得,故错误;D.直线AB所在直线方程为:,即,设,则点P到直线AB的距离为,其最大值为,同理点Q到直线AB的最大值为,所以四边形APBQ面积的最大值为,故正确.故选:BD12.如图,正方形ABCD-A1B1C1D1边长为1,P是上的一个动点,下列结论中正确的是()A.BP的最小值为B.的最小值为C.当P在直线上运动时,三棱锥的体积不变 D.以点B为球心,为半径的球面与面的交线长为【答案】ACD【解析】【分析】当时,BP最小,结合正三角形性质,求得B到直线的距离,判断A;建立空间直角坐标系,利用空间向量,设求得点,结合两点间的距离公式,求得PA+PC的最小值,判断B;根据当P在直线A1D上运动时,三棱锥的底面积以及高的变化情况,可确定体积不变没判断C;根据题意确定以点B为球心,为半径的球面与面的交线即为的内切圆,即可求得交线长,判断D.【详解】对于A,当时,BP最小,由于到直线距离对.对于B,解法一:以为坐标原点建系,以分别为x,y,z轴建立空间直角坐标系,则,设, ,表示平面上之间的距离,表示平面上之间的距离,错解法二:将平面翻折到平面上,如图,连接AC,与的交点即为点P,此时取最小值AC,在三角形ADC中,,,B错误;对于C,,平面,平面到平面的距离为定值,为定值,则为定值,对.对于D,由于平面,设与平面交于点, ,设以为球心,为半径的球与面交线上任一点为,在以为圆心,为半径的圆上,由于为正三角形,边长为,其内切圆半径为,故此圆恰好为的内切圆,完全落在面内,交线长为正确.故选:ACD【点睛】本题考查了空间几何中的距离以及距离和的最值问题,以及三棱锥体积和几何体中的轨迹问题,综合性强,要求充分发挥空间想象能力,解答时要能借助于几何体的直观图,明确空间的点线面的位置关系,灵活应用空间向量以及相关相关知识解决问题.三、填空题(本大题共4小题,每小题5分,共20分)13.已知p:“”为真命题,则实数a的取值范围是_________.【答案】【解析】【分析】根据条件将问题转化不等式在上有解,则,由此求解出的取值范围.【详解】因为“”为真命题,所以不等式在上有解,所以,所以,故答案为:.14.将(1+x)n(n∈N*)的展开式中x2的系数记为,则________. 【答案】【解析】【分析】由二项式的展开式的通项为:可得,,则,利用裂项求和即可求得结果.【详解】解:二项式的展开式的通项为:令可得,,故答案为:.15.柜子里有4双不同的鞋,随机的取两只,则取出的鞋一只是左脚的,一只是右脚的,但它们不成对的概率为__________.【答案】【解析】【分析】先求出取出的鞋一只是左脚的,一只是右脚的,但它们不成对的总数,再求出随机的取两只的总数,再利用古典概型的概率公式求解.【详解】解:由题意:可以先选出左脚的一只有种选法,然后从剩下的3双的右脚中选出一只有种选法,所以一共有种不同的取法;又因为柜子里有只不同的鞋,随机选出两只,一共有种选法,所以概率为.故答案为:16.关于不等式恰有一个整数解,则实数的取值范围是__________.【答案】##【解析】【分析】根据题意,构造函数,通过讨论的范围可得函数 的单调性,再结合图像与已知条件即可求解.【详解】①当时,原不等式不成立;②当时,由恰有一个整数解,得恰有一个整数解.令,则,因此函数在区间上单调递减,易得不可能只有一个整数解,故不满足;③当时,由恰有一个整数解,得恰有一个整数解.由②可知,易得函数在区间上单调递减,在区间上单调递增,故.又因,且恰有一个整数解,所以,即.综上,.故答案为:.【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.四、解答题(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤)17.已知各项都为正数的数列满足,.(1)若,求证:是等比数列;(2)求数列的前项和. 【答案】(1)证明见解析(2)【解析】【分析】(1)根据等比数列的定义,利用以及,即可得到,即可证明.(2)根据分组求和和等比数列求和公式即可求解.【小问1详解】因为所以,因为所以所以所以所以是首项和公比均为的等比数列.【小问2详解】由(1)易得:因为所以所以18.如图,三棱柱中侧棱与底面垂直,且,,,M,N,P,D分别为,BC,,的中点. (1)求证:面;(2)求平面PMN与平面所成锐二面角的余弦值.【答案】(1)证明见解析(2)【解析】【分析】(1)解法一,建立空间直角坐标系,求出相关各点的坐标,确定平面的一个法向量,计算,即可证明;解法二,证明平面平面,利用面面平行的性质定理即可证明;(2)建立空间直角坐标系,求出相关各点的坐标,确定平面的一个法向量,求出平面PMN的法向量,利用向量的夹角公式求得答案.【小问1详解】解法一:以点A为坐标原点,AB、AC、所在直线分别为x、y、z轴建立空间直角坐标系, 则,,,,.取向量为平面的一个法向量,,∴,∴.又∵平面,∴平面.解法二:∵P,D分别为,的中点,∴,且平面,平面,∴平面,∵D,N分别为,BC的中点,∴,且平面,平面,∴平面,又,∴平面平面,又∵平面PDN,∴平面.【小问2详解】 以点A为坐标原点,AB、AC、所在直线分别为x,y,z轴建立空间直角坐标系,则,,,,.∴,,取向量为平面的一个法向量,设平面PMN的法向量为,则,即,令,则,,则,∴,由图示可知平面PMN与平面的夹角为锐角,∴平面PMN与平面所成锐二面角的余弦值为.19.不等式对一切实数x恒成立k的取值集合为A,集合(1)求集合A;(2)若___________,求实数m的取值范围.在①“”是“”的充分条件;②“”是“”的必要条件这两个条件中任选 一个补充在第(2)问中,并给出解答.注:如果选择多个条件分别作答,则按第一种情况解答给分【答案】(1)(2)【解析】【分析】(1)当时,显然成立;当时由求解即可;(2)由题设得,即在上恒成立,由解出m的取值范围即可.【小问1详解】当时,显然恒成立,当时不等式对一切实数x都成立,则,解得,综上可得;【小问2详解】选①②都有又,即在上恒成立,令,则,解得,所以m的取值范围为;20.击鼓传花,也称传彩球,是中国民间游戏,数人或几十人围成圆圈坐下,其中一人拿花(或一小物件);另有一人背着大家或蒙眼击鼓(桌子、黑板或其他能发出声音的物体),鼓响时众人开始传花(顺序不定),至鼓停止为止,此时花在谁手中(或其座位前),谁就上台表演节目,某单位组织团建活动,9人一组,共9组,玩击鼓传花,(前五组)组号x与组内女性人数y统计结果如表:.x12345y22344(1)女性人数与组号x(组号变量x依次为1,2,3,4,5,...)具有线性相关关系,请预 测从第几组开始女性人数不低于男性人数;(参考公式:)(2)在(1)的前提下,从9组中随机抽取3组,若3组中女性人数不低于5人的有X组,求X的分布列与期望.【答案】(1)预测从第7组开始女性人数不低于男性人数(2)分布列见解析,1.【解析】【分析】(1)根据题意,结合已知公式得,再解即可估计得答案;(2)根据题意得的所有可能取值为0,1,2,3,再根据超几何分布求解即可.【小问1详解】解:由题可得,,.则所以当时,所以预测从第7组开始女性人数不低于男性人数.【小问2详解】解:由题可知的所有可能取值为0,1,2,3,则的分布列为 X0123P21.已知双曲线C:(a>0,b>0)的一个焦点坐标为(3,0),其中一条渐近线的倾斜角的正切值为,O为坐标原点.(1)求双曲线C的方程;(2)直线l与x轴正半轴相交于一点D,与双曲线C右支相切(切点不为右顶点),且l分别交双曲线C的两条渐近线于M、N两点,证明:△MON的面积为定值,并求出该定值.【答案】(1);(2)证明见解析,﹒【解析】【分析】(1)由双曲线的一个焦点坐标为可求c,根据一条渐近线的倾斜角的正切值为可求,结合a、b、c的关系求解、得到双曲线方程;(2)设直线的方程为,,联立直线与椭圆方程,利用判别式为0,求出k与m的关系.联立l与渐近线方程求出M和N的坐标,通过,化简即可.【小问1详解】由题可知,解得,则:;【小问2详解】由于直线与双曲线右支相切(切点不为右顶点),则直线的斜率存在且不为0,设直线的方程为,, 令,则,则.联立得,,则,即.双曲线两条渐近线方程为,联立得,,联立得,,,故的面积为定值.22.已知函数.(1)若有两个零点,的取值范围; (2)若方程有两个实根、,且,证明:.【答案】(1)(2)证明见解析【解析】【分析】(1)分析可知,由参变量分离法可知直线与函数的图象有两个交点,利用导数分析函数的单调性与极值,数形结合可求得实数的取值范围;(2)令,其中,令,,分析可知关于的方程也有两个实根、,且,设,将所求不等式等价变形为,令,即证,令,其中,利用导数分析函数的单调性,即可证得结论成立.【小问1详解】解:函数的定义域为.当时,函数无零点,不合乎题意,所以,,由可得,构造函数,其中,所以,直线与函数的图象有两个交点,,由可得,列表如下:增极大值减 所以,函数的极大值为,如下图所示:且当时,,由图可知,当时,即当时,直线与函数的图象有两个交点,故实数的取值范围是.【小问2详解】证明:因为,则,令,其中,则有,,所以,函数在上单调递增,因为方程有两个实根、,令,,则关于的方程也有两个实根、,且,要证,即证,即证,即证,由已知,所以,,整理可得,不妨设,即证,即证,令,即证,其中, 构造函数,其中,,所以,函数在上单调递增,当时,,故原不等式成立.【点睛】方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式(或)转化为证明(或),进而构造辅助函数;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 高中 - 数学
发布时间:2023-04-14 09:46:02 页数:25
价格:¥2 大小:1.28 MB
文章作者:随遇而安

推荐特供

MORE