首页

其他(心得)之浅谈如何培养学生逆向思维

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/5

2/5

剩余3页未读,查看更多内容需下载

其他论文之浅谈如何培养学生逆向思维 <br />  在生活中和学习中,无论是成人还是学生,都容易受定向思维的影响。所谓思维定势就是在思考问题时有一种习惯趋势,每遇到一个问题就按照一种固定的思路去思考。思维定势虽然可能引发灵敏的思考,但也能导致呆板的思考。在解决问题时候,当我们用定向思维去思考,遇到困难时,就应该转换自己的思维,换一个角度去思考,以求发现新的思路,这种心理过程使思维的转变在头脑中就形成了逆向思维。古往今来,典型用逆向思维思考的人就是司马光。司马光就是把一般思维中的&ldquo;人离开水&rdquo;变成&ldquo;水离开人&rdquo;,这就是一种可逆思维的思考。有时候可逆思维是创新的蹊径,许多伟大的科学家都是可逆思维的奇才。心理学家皮亚杰就把可逆思维作为儿童智慧发展的重要标准。苏联教育心理学家克鲁捷茨基的研究表明数学能力强的学生,在一个方向上形成了联系,就意味着相反方向上建立了联系,因而他能迅速地辨认或理解逆向问题,数学能力差的学生则往往感到困难。下面结合本人的教学实践,谈谈如何培养小学生的逆向思维。 <br />  一、     概念教学中逆向思维的培养 <br />  我们数学中建立概念的目的是为了把所反映的事物和其它的事物区别开来。而一些概念的建立是成对的,他们之间存在着对立与统一的关系。我们在教学了一些概念后,可以进行可逆叙述来加深对概念的理解。比如,教学质数的概念。一个数,如果只有1和它本身两个因数的,这样的数叫做质数。我们可以引导学生采用逆向述说的方法来加深记忆。质数只有1和它本身两个因数。这个概念就是可以逆述的。再比如,方程的概念:含有未知数的等式叫做方程。我们可以采用逆述分解的方法:方程是等式,同时含有未知数。逆述分解后,就扩展了概念的外延。在判断&ldquo;方程就是等式,等式就是方程&rdquo;一题的时候,运用分解逆述就很容易判断出这个命题是错误的。只要举出一个满足命题,但结论不成立的例子就可以判定这个命题是错误的,这样的例子就是通常意义下的反例。当接触一个新概念时,如果注意其反向训练,不仅能使学生准确理解这些概念,巧妙解决有关问题,还能培养他们养成进行可逆思维的习惯。 <br />  二、     计算问题中可逆思维的培养 <br />  进行有关数与运算的教学时,对学生进行可逆思维的训练,可以使学生在计算中举一反三,这样有助于学生思维的发散,比如加强逆向数数的训练,能加深学生对数的理解。数学中的各种运算总是正逆交替成对出现的,且可以互相转化。加强正逆运算的转化训练,不但可以简化思维过程,准确理解各种运算的实质,还可以培养学生的可逆思维。&ldquo;做减法想加法,做除法想乘法&rdquo;,运用计算的可逆性解题。例如:例如,给学生一题乘法算式10-7=(  ),可逆思考:(  )+7=10,这便可加深对加、减法之间或乘、除法之间的关系的理解。此外,数学中的公式都具有双向性。在正向应用的同时,加强公式的逆向应用,不仅可以加深学生对公式的理解和掌握,培养学生灵活运用公式的能力,还可以培养学生的可逆思维能力。例如,在学习了乘法分配律后,我们会感受到学生对公式的记忆很清晰,做题时却感觉到困难,为什么?因为学生只记住了公式,对公式的理解还不够。如果学生会运用乘法分配律:(a±b)c=ac±bc后,还要会逆向思考ac±bc=(a±b) c 。只有顺逆互建,才能灵活地运用乘法分配律,解决实际问题。 <br />  三、     图形问题中可逆思维的培养 <br />  在几何图形教学中,让学生进行可逆思维,不仅能提高解题的效率,使问题巧妙获解,而且还有助于学生空间观念的培养和图形设计、推理能力的提高。在我们教学圆的面积公式之后,学生已经形成思维的定势,熟练的运用圆的面积公式,要想求面积就必须要知道半径。 <br />  有这样的一道题:有个圆,并以圆的半径为边做了一个正方形,已知正方形的面积,求圆的面积。这可把学生难住了,一个小学生哪里会开平方啊,可不开平方就不能求出圆的半径啊。让我们换一种思维,正方形的面积就是边长乘边长,那已经就是圆的半径的平方了,干吗还要求半径呢?这就是思维的逆向。 <br />  四、     应用题中的可逆思维的培养考 <br />  应用题的教学不只是为了求...

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2023-01-16 13:27:52 页数:5
价格:¥3 大小:27.00 KB
文章作者:U-67198

推荐特供

MORE