首页

4.3探索三角形全等的条件第2课时利用“角边角”“角角边”判定三角形全等课件(北师大版七下)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/23

2/23

3/23

4/23

剩余19页未读,查看更多内容需下载

3探索三角形全等的条件第四章三角形第2课时利用“角边角”“角角边”判定三角形全等,情境引入学习目标1.探索并正确理解三角形全等的判定方法“ASA”和“AAS”.2.会用三角形全等的判定方法“ASA”和“AAS”证明两个三角形全等.,导入新课如图,小明不慎将一块三角形玻璃打碎为三块,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具吗?如果可以,带哪块去合适?你能说明其中理由吗?情境引入321,讲授新课三角形全等的判定(“角边角”)一问题:如果已知一个三角形的两角及一边,那么有几种可能的情况呢?ABCABC图一图二“两角及夹边”“两角和其中一角的对边”它们能判定两个三角形全等吗?,作图探究先任意画出一个△ABC,再画一个△A′B′C′,使A′B′=AB,∠A′=∠A,∠B′=∠B(即使两角和它们的夹边对应相等).把画好的△A′B′C′剪下,放到△ABC上,它们全等吗?ACB,ACBA′B′C′ED作法:(1)画A'B'=AB;(2)在A'B'的同旁画∠DA'B'=∠A,∠EB'A'=∠B,A'D,B'E相交于点C'.想一想:从中你能发现什么规律?,知识要点“角边角”判定方法文字语言:有两角和它们夹边对应相等的两个三角形全等(简写成“角边角”或“ASA”).几何语言:∠A=∠A′(已知),AB=A′B′(已知),∠B=∠B′(已知),在△ABC和△A′B′C′中,∴△ABC≌△A′B′C′(ASA).ABCA′B′C′,例1已知:∠ABC=∠DCB,∠ACB=∠DBC,试说明:△ABC≌△DCB.∠ABC=∠DCB(已知),BC=CB(公共边),∠ACB=∠DBC(已知),解:在△ABC和△DCB中,∴△ABC≌△DCB(ASA).典例精析BCAD判定方法:两角和它们的夹边对应相等两个三角形全等.,例2如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,试说明:AD=AE.ABCDE分析:证明△ACD≌△ABE,就可以得出AD=AE.解:在△ACD和△ABE中,∠A=∠A(公共角),AC=AB(已知),∠C=∠B(已知),∴△ACD≌△ABE(ASA),∴AD=AE.,问题:若三角形的两个内角分别是60°和45°,且45°所对的边为3cm,你能画出这个三角形吗?60°45°用“角角边”判定三角形全等二合作探究,60°45°思考:这里的条件与1中的条件有什么相同点与不同点?你能将它转化为1中的条件吗?75°,两角分别相等且其中一组对角的对边相等的两个三角形全等.简写成“角角边”或“AAS”.归纳总结∠A=∠A′(已知),∠B=∠B′(已知),AC=A′C′(已知),在△ABC和△A′B′C′中,∴△ABC≌△A′B′C′(AAS).ABCA′B′C′,例3:在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF.求说明:△ABC≌△DEF.∠B=∠E,BC=EF,∠C=∠F.解:在△ABC中,∠A+∠B+∠C=180°.∴△ABC≌△DEF(ASA).∴∠C=180°-∠A-∠B.同理∠F=180°-∠D-∠E.又∠A=∠D,∠B=∠E,∴∠C=∠F.在△ABC和△DEF中,,例4如图,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.试说明:(1)△BDA≌△AEC;解:(1)∵BD⊥m,CE⊥m,∴∠ADB=∠CEA=90°,∴∠ABD+∠BAD=90°.∵AB⊥AC,∴∠BAD+∠CAE=90°,∠ABD=∠CAE.在△BDA和△AEC中,∠ADB=∠CEA=90°,∠ABD=∠CAE,AB=AC,∴△BDA≌△AEC(AAS).,(2)DE=BD+CE.∴BD=AE,AD=CE,∴DE=DA+AE=BD+CE.解:∵△BDA≌△AEC,方法总结:利用全等三角形可以解决线段之间的关系,比如线段的相等关系、和差关系等,解决问题的关键是运用全等三角形的判定与性质进行线段之间的转化.,1.△ABC和△DEF中,AB=DE,∠B=∠E,要使△ABC≌△DEF,则下列补充的条件中错误的是()A.AC=DFB.BC=EFC.∠A=∠DD.∠C=∠F2.在△ABC与△A′B′C′中,已知∠A=44°,∠B=67°,∠C′=69°,∠A′=44°,且AC=A′C′,那么这两个三角形( )A.一定不全等 B.一定全等C.不一定全等  D.以上都不对当堂练习AB,3.如图,已知∠ACB=∠DBC,∠ABC=∠CDB,判别下面的两个三角形是否全等,并说明理由.不全等,因为BC虽然是公共边,但不是对应边.ABCD,ABCDEF4.如图∠ACB=∠DFE,BC=EF,那么应补充一个条件,才能使△ABC≌△DEF(写出一个即可).∠B=∠E或∠A=∠D或AC=DF(ASA)(AAS)(SAS)AB=DE可以吗?×AB∥DE,5.已知:如图,AB⊥BC,AD⊥DC,∠1=∠2,试说明:AB=AD.ACDB12解:∵AB⊥BC,AD⊥DC,∴∠B=∠D=90°.在△ABC和△ADC中,∠1=∠2(已知),∠B=∠D(已证),AC=AC(公共边),∴△ABC≌△ADC(AAS),∴AB=AD.,学以致用:如图,小明不慎将一块三角形模具打碎为三块,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具吗?如果可以,带哪块去合适?你能说明其中理由吗?321答:带1去,因为有两角且夹边相等的两个三角形全等.,能力提升:已知:如图,△ABC≌△A′B′C′,AD、A′D′分别是△ABC和△A′B′C′的高.试说明AD=A′D′,并用一句话说出你的发现.ABCDA′B′C′D′,解:因为△ABC≌△A′B′C′,所以AB=A'B'(全等三角形对应边相等),∠ABD=∠A'B'D'(全等三角形对应角相等).因为AD⊥BC,A'D'⊥B'C',所以∠ADB=∠A'D'B'.在△ABD和△A'B'D'中,∠ADB=∠A'D'B'(已证),∠ABD=∠A'B'D'(已证),AB=AB(已证),所以△ABD≌△A'B'D'.所以AD=A'D'.ABCDA′B′C′D′全等三角形对应边上的高也相等.,课堂小结边角边角角边内容有两角及夹边对应相等的两个三角形全等(简写成“ASA”)应用为证明线段和角相等提供了新的证法注意注意“角角边”、“角边角”中两角与边的区别

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2022-03-25 15:38:45 页数:23
价格:¥3 大小:510.00 KB
文章作者:随遇而安

推荐特供

MORE