18.2平行四边形的判定第1课时平行四边形的判定定理1,2课件(华师大版八下)
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
1/27
2/27
3/27
4/27
剩余23页未读,查看更多内容需下载
18.2平行四边形的判定第十八章平行四边形第1课时平行四边形的判定定理1,2
学习目标1.经历平行四边形判定定理的猜想与证明过程,体会类比思想及探究图形判定方法的一般思路;(重点)2.掌握平行四边形的判定定理1和2,能根据不同条件灵活选取适当的判定定理进行推理论证.(难点)
数学来源于生活,高铁被外媒誉为我国新四大发明之一,我们知道铁路的两条直铺的铁轨互相平行,那么铁路工人是怎样确保它们平行的呢?情景引入导入新课
只要使互相平行的夹在铁轨之间的枕木长相等就可以了那这是为什么呢?会不会跟我们学过的平行四边形有关呢?
猜想观看视频,将两长两短的四根细木条用小钉固定在一起,任意拉动,所得的四边形是平行四边形吗?两组对边分别相等的四边形是平行四边形一讲授新课
你能根据平行四边形的定义证明它们吗?已知:四边形ABCD中,AB=DC,AD=BC.求证:四边形ABCD是平行四边形.ABCD连接AC,在△ABC和△CDA中,AB=CD(已知),BC=DA(已知),AC=CA(公共边),∴△ABC≌△CDA(SSS)∴∠1=∠4,∠2=∠3,∴AB∥CD,AD∥BC,∴四边形ABCD是平行四边形.证明:1423证一证
两组对边分别相等的四边形是平行四边形.∵AB=CD,AD=BC∴四边形ABCD是平行四边形.几何语言:平行四边形判定定理1BDCA总结归纳
例1如图,在Rt△MON中,∠MON=90°.求证:四边形PONM是平行四边形.证明:Rt△MON中,由勾股定理得(x-5)2+42=(x-3)2,解得x=8.∴PM=11-x=3,ON=x-5=3,MN=x-3=5.∴PM=ON,OP=MN,∴四边形PONM是平行四边形.典例精析
例2如图,在△ABC中,分别以AB、AC、BC为边在BC的同侧作等边△ABD、等边△ACE、等边△BCF.试说明四边形DAEF是平行四边形.解:∵△ABD和△FBC都是等边三角形,∴∠DBF+∠FBA=∠ABC+∠ABF=60°,∴∠DBF=∠ABC.又∵BD=BA,BF=BC,∴△ABC≌△DBF(SAS),∴AC=DF=AE.同理可证△ABC≌△EFC,∴AB=EF=AD,∴四边形DAEF是平行四边形.
如图,AD⊥AC,BC⊥AC,且AB=CD,求证:四边形ABCD是平行四边形.证明:在Rt△ABC和Rt△CDA中,∵AC=CA,AB=CD,∴Rt△ABC≌Rt△CDA(HL),∴BC=AD.又∵AB=CD,∴四边形ABCD是平行四边形.练一练
问题我们知道,两组对边分别平行或相等的四边形是平行四边形.如果只考虑四边形的一组对边,它们满足什么条件时这个四边形能成为平行四边形呢?猜想1:一组对边相等的四边形是平行四边形.一组对边平行且相等的四边形是平行四边形二等腰梯形不是平行四边形,因而此猜想错误.猜想2:一组对边平行的四边形是平行四边形.梯形的上下底平行,但不是平行四边形,因而此猜想错误.
BA活动如图,将线段AB向右平移BC长度后得到线段DC,连接AD,BC,由此你能猜想四边形ABCD的形状吗?DC四边形ABCD是平行四边形猜想3:一组对边平行且相等的四边形是平行四边形.你能证明吗?
ABCD证明思路作对角线构造全等三角形一组对应边相等两组对边分别相等四边形ABCD是平行四边形如图,在四边形ABCD中,AB=CD且AB∥CD,求证:四边形ABCD是平行四边形.证一证
ABCD21证明:连接AC.∵AB∥CD,∴∠1=∠2.在△ABC和△CDA中,AB=CD,AC=CA,∠1=∠2,∴△ABC≌△CDA(SAS),∴BC=DA.又∵AB=CD,∴四边形ABCD是平行四边形.
一组对边平行且相等的四边形是平行四边形.∵AB=CD,AB∥CD∴四边形ABCD是平行四边形.几何语言:平行四边形判定定理2BDCA总结归纳
证明:∵四边形ABCD是平行四边形,∴AB=CD,EB//FD.又∵EB=AB,FD=CD,∴EB=FD.∴四边形EBFD是平行四边形.例3如图,在平行四边形ABCD中,E,F分别是AB,CD的中点.求证:四边形EBFD是平行四边形.
例4如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,AE=DF,∠A=∠D,AB=DC.求证:四边形BFCE是平行四边形.证明:∵AB=CD,∴AB+BC=CD+BC,即AC=BD,在△ACE和△DBF中,AC=DB,∠A=∠D,AE=DF,∴△ACE≌△DBF(SAS),∴CE=BF,∠ACE=∠DBF,∴CE∥BF,∴四边形BFCE是平行四边形.
【变式题】如图,点C是AB的中点,AD=CE,CD=BE.(1)求证:△ACD≌△CBE;(2)求证:四边形CBED是平行四边形.证明:(1)∵点C是AB的中点,∴AC=BC.在△ADC与△CEB中,AD=CE,CD=BE,AC=CB,∴△ADC≌△CEB(SSS),(2)∵△ADC≌△CEB,∴∠ACD=∠CBE,∴CD∥BE.又∵CD=BE,∴四边形CBED是平行四边形.
练一练已知四边形ABCD中有四个条件:AB∥CD,AB=CD,BC∥AD,BC=AD,从中任选两个,不能使四边形ABCD成为平行四边形的选法是( )A.AB∥CD,AB=CDB.AB∥CD,BC∥ADC.AB∥CD,BC=ADD.AB=CD,BC=ADC
1.如图所示,△ABC是等边三角形,P是其内任意一点,PD//AB,PE//BC,PF//AC,若△ABC的周长为24,则PD+PE+PF=.AFBDCEP82.已知AD//BC,要使这个四边形ABCD为平行四边形,需要增加条件_____.AD=BC或AB//CD当堂练习
3.已知:如图,E,F分别是平行四边形ABCD的边AD,BC的中点.求证:BE=DF.DFECBA证明:∵四边形ABCD是平行四边形,∴AB∥CDAD=BC∵E,F分别是AD,BC的中点,∴ED=BF,即EDBF.∥﹦∴四边形EBFD是平行四边形(一组对边平行并且相等的四边形是平行四边形).∴BE=DF(平行四边形的对边分别相等).
4.如图,已知E,F,G,H分别是▱ABCD的边AB,BC,CD,DA上的点,且AE=CG,BF=DH.求证:四边形EFGH是平行四边形.证明:在平行四边形ABCD中,∠A=∠C,AD=BC,又∵BF=DH,∴AH=CF.又∵AE=CG,∴△AEH≌△CGF(SAS),∴EH=GF.同理得△BEF≌△DGH(SAS),∴GH=EF,∴四边形EFGH是平行四边形.
现有一块等腰直角三角形铁板,要求切割一次,焊接成一个含有45°角的平行四边形(不能有余料),请你设计一种方案,并说明该方案正确的理由.ABC能力提升
CABFED
DCABE
ABCFDE
课堂小结平行四边形的判定判定定理1判定定理2两组对边分别相等的四边形是平行四边形.一组对边平行且相等的四边形是平行四边形.
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)