首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
试卷
>
高中
>
数学
>
北京市海淀区2022年高三上学期数学期中练习试卷附答案
北京市海淀区2022年高三上学期数学期中练习试卷附答案
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/7
2
/7
3
/7
4
/7
5
/7
6
/7
7
/7
充值会员,即可免费下载
文档下载
高三上学期数学期中练习试卷9.下列不等关系中正确的是( )一、单选题A.B.1.在复平面内,复数对应的点的坐标为( )C.D.A.B.C.D.10.如图,A是轮子外边沿上的一点,轮子半径为.若轮子从图中位置向右无滑动滚动,则当滚动的水2.已知向量,若,则=( )平距离为时,下列描述正确的是( )(参考数据:)A.点A在轮子的左下位置,距离地面约为A.1B.-1C.2D.-2B.点A在轮子的右下位置,距离地面约为3.已知全集,集合,,则集合可能是( )C.点A在轮子的左下位置,距离地面约为A.{4}B.C.D.D.点A在轮子的右下位置,距离地面约为二、填空题4.已知命题,则是( )11.已知是数列的前项和.若,则.A.,B.,12.已知函数,则函数的零点个数为 .C.,D.,5.下列函数中,是奇函数且在其定义域上为增函数的是( )13.某生物种群的数量Q与时间t的关系近似地符合.A.B.C.D.给出下列四个结论:6.“”是“”的( )①该生物种群的数量不会超过10;A.充分不必要条件B.必要不充分条件②该生物种群数量的增长速度先逐渐变大后逐渐变小;C.充要条件D.既不充分也不必要条件③该生物种群数量的增长速度与种群数量成正比;7.已知等比数列的公比为,若为递增数列且,则( )④该生物种群数量的增长速度最大的时间.A.B.C.D.根据上述关系式,其中所有正确结论的序号是 .8.将函数的图象向右平移个单位,得到函数的图象,则下列说法正确的是( )14.已知中,,,,则 ,A..15.已知命题:若满足,则是直角三角形.能说明为假命题的一组B.是函数的图象的一条对称轴角为 ,B=.三、解答题C.在上是减函数16.已知等差数列满足.D.在上是增函数(1)若,求数列的通项公式;(2)若数列是公比为3的等比数列,且,求数列的前n项和.\n17.已知函数(1)当时,已知集合,.分别判断这两(1)求函数的最小正周期;个集合是否为的完美子集,并说明理由;(2)当时,已知集合.若不是的完(2)设函数,求的值域.美子集,求的值;18.已知函数,(3)已知集合,其中.若(1)直接写出曲线与曲线的公共点坐标,并求曲线在公共点处的切线对任意都成立,判断是否一定为的完美子集.若是,请说明理由;若不是,请给出反例.方程;答案解析部分(2)已知直线分别交曲线和于点,.当时,设1.【答案】B的面积为,其中O是坐标原点,求的最大值.【解析】【解答】由题意,,19.设的内角A,B,C的对边分别为a,b,c,且.所以对应的点的坐标为.(1)求角A的大小;故答案为:B.(2)再从以下三组条件中选择一组条件作为已知条件,使三角形存在且唯一确定,并求的面积.第①组条件:,;【分析】根据已知条件,结合复数的乘法原则和复数的几何意义,即可求解.第②组条件:,;2.【答案】D【解析】【解答】因为向量,,,第③组条件:边上的高,.所以,解得:,20.设函数,.故答案为:D.(1)当时,求函数的单调增区间;(2)若函数在区间上为减函数,求a的取值范围;【分析】利用向量平行的坐标运算直接求解,可得答案。(3)若函数在区间内存在两个极值点,,且满足,请3.【答案】C直接写出a的取值范围.【解析】【解答】∵,21.设正整数,集合,对于集合中的任意∴元素和,及实数,定义:当且仅当又∵时;;.∴若的子集满足:当且仅当时,,则故答案为:C.称为的完美子集.【分析】由已知结合补集的性质可求A∪B,然后结合补集运算进行判断.\n4.【答案】C则,即,【解析】【解答】由全称命题的否定是特称命题知:,,故答案为:C.是,,故答案为:C.【分析】由已知条件结合等比数列的定义,即可求出答案。8.【答案】D【分析】根据含有量词的命题的否定即可得到结论.【解析】【解答】对于A:因为将函数的图象向右平移个单位,得到函数的图象,5.【答案】B【解析】【解答】对于A,函数是奇函数,但在其定义域上不单调,A不正确;所以,A不正确;对于B,函数定义域是R,是奇函数,当时,在上单调递增,当对于B:,可得,所以不是函数的图象的一条对称时,在上也单调递增,轴,B不正确;即函数在其定义域R上单调递增,B符合题意;对于C:令,可得,对于C,函数是奇函数,但在其定义域上不单调,C不正确;对于D,函数定义域是,它是奇函数,在和上单调递所以在上单调递减,在上单调递增,C不正确;增,但在其定义域上不单调,D不正确.故答案为:B对于D:由C知:当时,,所以在上是增函数,D符合题意;故答案为:D.【分析】根据函数奇偶性和单调性的性质,逐项进行判断,可得答案。6.【答案】D【分析】由条件利用函数y=Asin(x+φ)的图象变换规律,再结合正弦函数的图象的对称性和单调性,逐项【解析】【解答】若,则当时,有,即推不出,进行分析,可得答案。若,则当时,有,即也推不出,9.【答案】B“”是“”的既不充分也不必要条件.【解析】【解答】对于A,,而函数在单调递故答案为:D增,显然,【分析】根据不等式的性质及充分条件、必要条件的定义,可得答案。则,A不正确;7.【答案】C当时,令,,当时,,当【解析】【解答】因为等比数列为递增数列且,时,,所以,即在上单调递增,在上单调递减,都有,则\n,成立【解析】【解答】解方程,当时,,而,于是得,即取,则,取,则,即,当时,,解得,,所以函数的零点个数为2.于是得,B符合题意;故答案为:2对于C,显然,,,C不正确;当时,令,,则在上单调递减,【分析】根据函数零点的定义,在分段函数的每一段求得零点,加起来就是零点的个数.,于是得,13.【答案】①②④所以,D不正确.【解析】【解答】,因为,故,,故该生物故答案为:B种群的数量不会超过10,①正确;【分析】通过对数运算,利用对数函数的单调性,可判断出正确答案.10.【答案】A由,显然该生物种群数量的增长速度与种群数量不成正比,【解析】【解答】车轮的周长为,当滚动的水平距离为时,即车轮转动个周期,③错;因为为对勾函数模型,故,当且仅当时取到等号,故即点A在轮子的左下位置,距离地面约为,整体先增加后减小,当时,最大,故②④正确,故答案为:A.综上所述,①②④正确,故答案为:①②④【分析】由已知求出轮子滚动的水平距离为2.2m时点A转到的角的大小,即可求得答案.11.【答案】2【分析】由分子常数化可得Q(t)的范围,可判断①;求得Q(t)的导数,可得单调区间和极值、最值,可判【解析】【解答】因为是数列的前项和.若,断②③④.可得,,14.【答案】-1;-5【解析】【解答】因为,,,所以,故答案为:2.所以;,【分析】根据题意,由数列的前n项和公式以及,计算即可得答案.故答案为:-1;-5.12.【答案】2\n【分析】由平面向量数量积的运算法则可求得的值,由展开运算,即可(2)解:由第一问可知,得解。设,则15.【答案】;∴当时,取得最小值,;当时,取得最大值,,【解析】【解答】当,时,,但,此时不是直角三角形,说明为假命题.所以的值域为.故答案为:,【解析】【分析】(1)由题意利用三角恒等变换化简函数的解析式,再利用余弦函数的周期性,得出结论;(2)化简g(x)的解析式,根据余弦函数的值域,二次函数的性质,求得g(x)的值域.【分析】根据三角函数值及命题的真假,即可得出答案。18.【答案】(1)解:由即可得,所以,16.【答案】(1)解:由①,可得②,两式作差得所以公共点坐标为,,因为,所以在公共点处切线的斜率为,因为,所以,,,所以曲线在公共点处的切线方程为,即则是以首项为2,公差为2的等差数列,故(2)解:的面积为,(2)解:由是公比为3的等比数列,且可得,设,则是以首项为1,公比为3的等比数列,故,因为,所以,,所以,即,,所以,结合分组求和法可得,【解析】【分析】(1)将n换为n+1,两式相减,由等差数列的定义和通项公式,进而得到数列的通项公由即可得;由即可得;式;所以在上单调递增,在上单调递减,(2)由等比数列的通项公式可得,进而得到bn,再由数列的分组求和,结合等差数列和等比数列的求和公式,计算可得数列的前n项和.所以,所以当时,的最大值为.17.【答案】(1)解:【解析】【分析】(1)求得f(x)和g(x)的交点,求导,根据导数的几何意义,求得曲线y=f(x)在公共点处的切∴线方程;(2)根据三角形的面积公式,表示S(a)的表达式,求导根据导数与函数单调性的关系,即可求得S(a)的最大∴函数的最小正周期为\n值.所以a的取值范围是.19.【答案】(1)解:由,因为,化简得(3)解:由(2)知,,因函数在区间内存在两个极值点,,,则在区间内有两个不等根,,(2)解:若选①,则,,,由余弦定理可得,代入数即有,解得,且有,据化简得或3,根据大边对大角原则判断,或3都成立,故答案为:①不成立;不妨令,则,当或时,,当若选②,则,,,求得,由正弦定理可得,时,,解得,由,则在处取得极大值,在取得极小值,显然,,由两边平方得,因为,,唯一,则唯一,三角形存在且唯一确定,而,即,;整理得:,若选③,由边上的高可得,解得,又,由余弦定理可得把代入上述不等式并整理得:,解得,,代值化简得或(舍去),三角形存在且唯一确定,综上得,所以实数a的取值范围是.【解析】【分析】(1)当,求得的解析式,利用导数与函数单调性的关系,即可求得的【解析】【分析】(1)利用正弦定理化简已知条件可得tanA,进而求得A;(2)选①:由余弦定理可得或3,不符合题意;单调递增区间;选②:先求得sinC,结合两角和的正弦公式求得sinB,再由正弦定理求得a,进而可求得面积;(2)由题意可知,在(1,2)上恒成立,根据题意,分离参数,利用二次函数的性质,即可求得a的选③:先求出b,由余弦定理求得c,进而求得面积.取值范围;20.【答案】(1)解:当时,,则,由(3)由(2)可知,利用韦达定理可得,分别求得f(x1)+f(x2)和f(x1)-f(x2),代入,即可求得a取值解得:或,范围.所以函数的单调增区间是,.21.【答案】(1)解:设,即,所以是完美子集,(2)解:函数,则,因函数在区间上为减函设,可得,数,则,成立,即,,显然在上单调递减,即解得:,,,所以不是完美子集.,,则,(2)解:因为集合不是的完美子集,\n所以存在,使得,【解析】【分析】(1)根据完美子集的定义,设,列方程组求得,,的值即可判断;即,(2)由题意可得,存在,使得,列出方程组,解方程由集合的互异性可得:且且,所以且,组,求出m的值,即可求解;所以,可得,(3)假设存在不全为的实数、、满足,不妨设,则,由结合已知条件得出矛盾即可求解。所以,即,所以,所以或,当时,,解得:,所以存在使得,当时,因为,所以,,不符合题意,所以.(3)解:一定是的完美子集,假设存在不全为的实数、、满足,不妨设,则,否则与假设矛盾,由,可得,所以与即矛盾,所以假设不成立,所以,所以,所以一定是的完美子集.
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
北京市海淀区2022届高三数学上学期期中练习试题(附答案)
北京市2021-2022学年高三上学期期中语文试题(二)(附答案解析)
北京市海淀区2022届高三上期末语文试题(附答案解析)
北京市海淀区2021-2022学年高二上学期期中语文试题
北京市海淀区2022高三上期中练习物理
北京市海淀区2022届高三物理第二学期期中练习题
北京市海淀区2022届高三英语下学期期中练习(一模)试题
海淀区高三上学期期中练习语文试题doc
北京市海淀区2022学年高二年级第二学期期中练习语文试卷
北京市海淀区高三上学期数学期中练习试卷含答案解析
文档下载
收藏
所属:
高中 - 数学
发布时间:2022-09-20 20:00:02
页数:7
价格:¥10
大小:606.47 KB
文章作者:送你两朵小红花
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划