首页

山东省淄博市淄川一中2022届高三数学上学期期中试卷理含解析

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/18

2/18

剩余16页未读,查看更多内容需下载

2022-2022学年山东省淄博市淄川一中高三(上)期中数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={y|y=2x,x>0},N={y|y=lgx,x∈M},则M∩N为()A.(1,+∞)B.(1,2)C.[2,+∞)D.[1,+∞)2.(文)若a∈R,则“a2>a”是“a>1”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件3.函数的定义域为()A.(1,3]B.(﹣∞,3]C.(0,3]D.(1,3)4.设,则a,b,c的大小关系是()A.a>b>cB.a>c>bC.b>a>cD.b>c>a5.已知矩形ABCD中,,BC=1,则=()A.1B.﹣1C.D.6.已知则tanβ=()A.B.C.D.7.曲线在点(4,e2)处的切线与坐标轴所围三角形的面积为()A.e2B.2e2C.4e2D.8.要得到函数的图象,只需将函数的图象()A.向左平移个单位长度B.向右平移个单位长度18\nC.向左平移个单位长度D.向右平移个单位长度9.定义在R上的函数f(x)满足f(x+1)=2f(x),且当x∈(0,1)时,f(x)=4x,则f(5.5)=()A.32B.C.64D.1610.设函数f(x)=ex+x﹣2的零点为x1,函数g(x)=lnx+x2﹣3的零点为x2,则()A.g(x1)<0,f(x2)>0B.g(x1)>0,f(x2)<0C.g(x1)>0,f(x2)>0D.g(x1)<0,f(x2)<0二.填空题:本大题共5小题,每小题5分,共25分,答案须填在答题卡题中横线上.11.在等差数列{an}中,已知a2+a9=7,则3a5+a7=__________.12.由曲线y=x3与围成的封闭图形的面积是__________.13.若函数f(x)=,则f(2)的值为__________.14.a,b,c分别是△ABC的三边,a=4,b=5,c=6,则△ABC的面积是__________.15.已知函数,若关于x的方程f(x)=k有两个不同的实根,则实数k的取值范围是__________.三.解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.16.已知函数(Ⅰ)求f(x)的单调递减区间;(Ⅱ)将函数y=f(x)的图象向左平移个单位,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求函数y=g(x)在[﹣π,0]上的值域.17.已知函数f(x)=,x∈R.(Ⅰ)求函数f(x)的最小值和最小正周期;18\n(Ⅱ)已知△ABC内角A、B、C的对边分别为a、b、c,且c=3,f(C)=0,若向量与共线,求a、b的值.18.已知数列{an}是递增的等比数列,a1+a4=9,a2a3=8.(Ⅰ)求数列{an}的通项公式;(Ⅱ)若bn=an•log2an,求数列{bn}的前n项和Tn.19.等差数列{an}的前n项和为Sn,且S5=45,S6=60.(1)求{an}的通项公式an;(2)若数列{an}满足bn+1﹣bn=an(n∈N*)且b1=3,求的前n项和Tn.20.(13分)已知一工厂生产某种产品的年固定成本为100万元,每生产1千件需另投入27万元.设该工厂一年内生产这种产品x千件并全部销售完,每千件的销售收入为p(x)万元,且(Ⅰ)写出年利润f(x)(万元)关于年产量x(千件)的函数关系式;(Ⅱ)年产量为多少千件时,该工厂在这种产品的生产中所获得的年利润最大?(注:年利润=年销售收入﹣年总成本)21.(14分)设函数,其中a∈R.(Ⅰ)a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)讨论函数y=f(x)的单调性;(Ⅲ)当时,证明对∀x∈(0,2),都有f(x)<0.18\n2022-2022学年山东省淄博市淄川一中高三(上)期中数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={y|y=2x,x>0},N={y|y=lgx,x∈M},则M∩N为()A.(1,+∞)B.(1,2)C.[2,+∞)D.[1,+∞)【考点】对数函数的定义域;交集及其运算.【专题】计算题.【分析】利用指数函数的性质,求出集合M,对数函数的值域求出集合N,然后求解交集即可.【解答】解:集合M={y|y=2x,x>0}={y|>1},N={y|y=lgx,x∈M}={y|y>0},所以M∩N={y|y>1}.故选A.【点评】本题考查集合的交集的求法,求出函数的值域是解题的关键.2.(文)若a∈R,则“a2>a”是“a>1”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】简易逻辑.【分析】运用充分必要条件定义判断求解.【解答】解:∵a∈R,当a2>a时,即a>1或a<0,a>1不一定成立当a>1时,a2>a成立,∴充分必要条件定义可判断:“a2>a”是“a>1”的必要不充分条件,故选:B【点评】本题考查了充分必要条件定义,很容易判断.3.函数的定义域为()A.(1,3]B.(﹣∞,3]C.(0,3]D.(1,3)【考点】函数的定义域及其求法.【专题】函数的性质及应用.【分析】根据对数函数的性质得到0<x﹣1≤2,解出即可.【解答】解:由1﹣log2(x﹣1)≥0,即log2(x﹣1)≤1,解得0<x﹣1≤2,即1<x≤3,所以函数的定义域为(1,3].故选:A.【点评】本题考查了函数的定义域、对数函数的图象与性质,是一道基础题.18\n4.设,则a,b,c的大小关系是()A.a>b>cB.a>c>bC.b>a>cD.b>c>a【考点】对数值大小的比较;不等式比较大小.【分析】根据指数函数和对数函数的单调性判断出abc的范围即可得到答案.【解答】解:∵a=20.1>20=10=ln1<b=ln<lne=1c=<log31=0∴a>b>c故选A.【点评】本题主要考查指数函数和对数函数的单调性,即当底数大于1时单调递增,当底数大于0小于1时单调递减.5.已知矩形ABCD中,,BC=1,则=()A.1B.﹣1C.D.【考点】平面向量数量积的运算.【专题】计算题;数形结合;向量法;平面向量及应用.【分析】法一、以A为坐标原点,AB为x轴,AD为y轴建立平面直角坐标系,得到点的坐标,进一步求得向量的坐标得答案;法二、以为基底,把用基底表示,则可求.【解答】解:法一、如图,以A为坐标原点,AB为x轴,AD为y轴建立平面直角坐标系,则A(0,0),,,D(0,1),∴,,则.故选:A.法二、记,,则,,,∴=.故选:A.18\n【点评】本题考查平面向量的数量积运算,解答此类问题常用两种方法,即建系法或利用平面向量基本定理解决,建系法有时能使复杂的问题简单化,是中档题.6.已知则tanβ=()A.B.C.D.【考点】两角和与差的正切函数.【专题】计算题.【分析】把所求的角β变为α﹣(α﹣β),然后利用两角和与差的正切函数公式化简后,将各自的值代入即可求出值.【解答】解:由,则tanβ=tan[α﹣(α﹣β)]=.故选C.【点评】此题考查学生灵活运用两角和与差的正切函数公式化简求值,是一道基础题.学生做题时注意角度的变换.7.曲线在点(4,e2)处的切线与坐标轴所围三角形的面积为()A.e2B.2e2C.4e2D.【考点】利用导数研究曲线上某点切线方程.【专题】计算题;作图题;导数的综合应用.【分析】由题意作图,求导y′=,从而写出切线方程为y﹣e2=e2(x﹣4);从而求面积.【解答】解:如图,y′=;故y′|x=4=e2;18\n故切线方程为y﹣e2=e2(x﹣4);当x=0时,y=﹣e2,当y=0时,x=2;故切线与坐标轴所围三角形的面积S=×2×e2=e2;故选A.【点评】本题考查了导数的求法及曲线切线的求法,同时考查了数形结合的思想,属于中档题.8.要得到函数的图象,只需将函数的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【考点】函数y=Asin(ωx+φ)的图象变换.【专题】计算题;三角函数的图像与性质.18\n【分析】把化为,故把的图象向左平移个单位,即得函数y=cos2x的图象.【解答】解:=,故把的图象向左平移个单位,即得函数的图象,即得到函数的图象.故选C.【点评】本题考查诱导公式,以及y=Asin(ωx+∅)图象的变换,把两个函数化为同名函数是解题的关键.9.定义在R上的函数f(x)满足f(x+1)=2f(x),且当x∈(0,1)时,f(x)=4x,则f(5.5)=()A.32B.C.64D.16【考点】函数解析式的求解及常用方法.【专题】函数的性质及应用.【分析】由题意可得f(5.5)=2f(4.5)=22f(3.5)=…=25f(0.5),代值计算可得.【解答】解:由f(x+1)=2f(x)知,f(5.5)=2f(4.5)=22f(3.5)=…=25f(0.5)=25•40.5=64.故选:C.【点评】本题考查函数求值,涉及指数的运算,属基础题.10.设函数f(x)=ex+x﹣2的零点为x1,函数g(x)=lnx+x2﹣3的零点为x2,则()A.g(x1)<0,f(x2)>0B.g(x1)>0,f(x2)<0C.g(x1)>0,f(x2)>0D.g(x1)<0,f(x2)<0【考点】函数零点的判定定理.【专题】综合题;综合法;函数的性质及应用.【分析】由零点存在性定理知x1∈(0,1);x2∈(1,2),再利用单调性,即可得出结论.【解答】解:因为函数f(x)=ex+x﹣2在R上单调递增,且f(0)=﹣1<0,f(1)=e﹣1>0,由零点存在性定理知x1∈(0,1);因为函数g(x)=lnx+x2﹣3在(0,+∞)上单调递增,g(1)=﹣2<0,g(2)=ln2+1>0,由零点存在性定理知x2∈(1,2).因为函数g(x)=lnx+x2﹣3在(0,+∞)上单调递增,且x1∈(0,1),所以g(x1)<g(1)<0;因为函数f(x)=ex+x﹣2在R上单调递增,且x2∈(1,2),所以f(x2)>f(1)>0.故选A.18\n【点评】本题考查函数的零点存在性定理,考查函数的单调性,考查学生分析解决问题的能力,属于中档题.二.填空题:本大题共5小题,每小题5分,共25分,答案须填在答题卡题中横线上.11.在等差数列{an}中,已知a2+a9=7,则3a5+a7=14.【考点】等差数列的通项公式.【专题】计算题;整体思想;数学模型法;等差数列与等比数列.【分析】由已知求得2a1+9d=7,把3a5+a7转化为含有2a1+d的形式得答案.【解答】解:在等差数列{an}中,由a2+a9=7,得a1+d+a1+8d=7,即2a1+9d=7,∴3a5+a7=3(a1+4d)+a1+6d=2(2a1+9d)=2×7=14.故答案为:14.【点评】本题考查等差数列的通项公式,体现了整体运算思想方法,是基础题.12.由曲线y=x3与围成的封闭图形的面积是.【考点】定积分在求面积中的应用.【专题】综合题;数形结合法;导数的综合应用.【分析】作出两个曲线的图象,求出它们的交点,由此可得所求面积为函数y=x3与在区间[0,1]上的定积分的值,再用定积分计算公式加以运算即可得.【解答】解:如图在同一平面直角坐标系内作出y=x3与的图象,则封闭图形的面积.故答案为:.【点评】考点幂函数的图象、定积分,考查学生分析解决问题的能力,正确运用定积分是关键.13.若函数f(x)=,则f(2)的值为3.18\n【考点】分段函数的应用;函数的值.【专题】函数的性质及应用.【分析】利用分段函数化简求解即可.【解答】解:函数f(x)=,则f(2)=f(2+2)=f(4)=f(6)=6﹣3=3.故答案为:3.【点评】本题考查分段函数的应用,函数值的求法,考查计算能力.14.a,b,c分别是△ABC的三边,a=4,b=5,c=6,则△ABC的面积是.【考点】余弦定理.【专题】解三角形.【分析】利用余弦定理可求cosA的值,结合A的范围,利用同角三角函数关系式可求sinA的值,结合三角形面积公式即可得解.【解答】解:∵,∵A∈(0,π),∴,∴△ABC的面积.故答案为:.【点评】本题主要考查了余弦定理、三角形的面积公式,同角三角函数关系式的应用,属于基本知识的考查.15.已知函数,若关于x的方程f(x)=k有两个不同的实根,则实数k的取值范围是(0,1).【考点】函数的零点.【专题】作图题.【分析】由题意在同一个坐标系中作出两个函数的图象,图象交点的个数即为方程根的个数,由图象可得答案.【解答】解:由题意作出函数的图象,18\n关于x的方程f(x)=k有两个不同的实根等价于函数,与y=k有两个不同的公共点,由图象可知当k∈(0,1)时,满足题意,故答案为:(0,1)【点评】本题考查方程根的个数,数形结合是解决问题的关键,属基础题.三.解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.16.已知函数(Ⅰ)求f(x)的单调递减区间;(Ⅱ)将函数y=f(x)的图象向左平移个单位,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求函数y=g(x)在[﹣π,0]上的值域.【考点】三角函数中的恒等变换应用;函数y=Asin(ωx+φ)的图象变换.【专题】计算题;转化思想;定义法;三角函数的图像与性质.【分析】(Ⅰ)利用两角和差的正弦公式,结合辅助角公式进行化简,即可求f(x)的单调递减区间;(Ⅱ)根据三角函数的图象变换,进行化简求解即可.【解答】解:(Ⅰ)==,由,k∈Z,得,k∈Z,所以f(x)的单调递减区间为,k∈Z.18\n(Ⅱ)将的图象向左平移个单位,得到=,再将图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到.∵x∈[﹣π,0],∴.∴,∴.∴函数y=g(x)在[﹣π,0]上的值域为.【点评】本题主要考查三角函数的图象和性质,利用两角和差的正弦公式结合三角函数的图象变换关系是解决本题的关键.17.已知函数f(x)=,x∈R.(Ⅰ)求函数f(x)的最小值和最小正周期;(Ⅱ)已知△ABC内角A、B、C的对边分别为a、b、c,且c=3,f(C)=0,若向量与共线,求a、b的值.【考点】三角函数的最值;三角函数的周期性及其求法.【专题】三角函数的求值.【分析】(Ⅰ)由三角函数公式化简可得f(x)=sin(2x﹣)﹣1,可得最小值和周期;(Ⅱ)由f(C)=sin(2C﹣)﹣1=0结合角的范围可得C=,再由向量共线和正弦定理可得b=2a,由余弦定理可得ab的方程,解方程组可得.【解答】解:(Ⅰ)化简可得f(x)=sin2x﹣cos2x﹣1=sin(2x﹣)﹣1,∴f(x)的最小值为﹣2,最小正周期为T=π(Ⅱ)∵f(C)=sin(2C﹣)﹣1=0,∴sin(2C﹣)=1,∵0<C<π,∴﹣<2C﹣<,∴2C﹣=,∴C=,∵与共线,∴sinB﹣2sinA=0,∴由正弦定理可得==,即b=2a,①18\n∵c=3,∴由余弦定理可得9=a2+b2﹣2abcos,②联立①②解方程组可得【点评】本题考查三角函数的最值,涉及三角函数的周期性和余弦定理,属中档题.18.已知数列{an}是递增的等比数列,a1+a4=9,a2a3=8.(Ⅰ)求数列{an}的通项公式;(Ⅱ)若bn=an•log2an,求数列{bn}的前n项和Tn.【考点】数列的求和;等比数列的通项公式.【专题】方程思想;等差数列与等比数列.【分析】(Ⅰ)运用等比数列的通项公式,可得方程组,求得首项和公差,即可得到所求通项公式;(Ⅱ)运用对数的运算性质,化简bn,再由数列的求和方法:错位相减法,结合等比数列的求和公式即可得到.【解答】解法一:(Ⅰ)由即,消q3得,解得a1=1或a1=8,∴或,∵{an}是递增数列,∴,∴;(Ⅱ),,2Tn=0•21+1•22+2•23+…+(n﹣2)•2n﹣1+(n﹣1)•2n,∴相减可得,==(2﹣n)•2n﹣2,∴.解法二:(Ⅰ)因为{an}是等比数列,a2a3=8,所以a1a4=8.18\n又∵a1+a4=9,∴a1,a4是方程x2﹣9x+8=0的两根,∴或.∵{an}是递增数列,∴.∴,∴q=2.∴.(Ⅱ)下同解法一.【点评】本题考查等比数列的通项公式和求和公式的运用,注意运用方程的思想,考查数列的求和方法:错位相减求和,考查运算能力,属于中档题.19.等差数列{an}的前n项和为Sn,且S5=45,S6=60.(1)求{an}的通项公式an;(2)若数列{an}满足bn+1﹣bn=an(n∈N*)且b1=3,求的前n项和Tn.【考点】数列的求和;等差数列的通项公式.【专题】计算题;方程思想.【分析】(1)直接利用S5=45,S6=60得出关于首项和公差的两个等式,解方程即可求出首项和公差,进而求出其通项公式;(2)先利用叠加法求出数列{bn}的通项公式,再对数列{}的通项进行裂项,采用裂项相消法求和即可.【解答】解:(1)由S5=45,S6=60⇒⇒,∴an=a1+(n﹣1)d=5+2(n﹣1)=2n+3(Ⅱ)∵bn+1﹣bn=an∴b2﹣b1=a1b3﹣b2=a2b4﹣b3=a3…bn﹣bn﹣1=an﹣1叠加∴bn=(n+3)(n﹣1)+3=n2+2n∴18\n∴==.【点评】本题主要考查等差数列求和公式的应用以及叠加法和裂项相消求和法的应用,考查方程思想在解决数列问题中的应用以及计算能力.20.(13分)已知一工厂生产某种产品的年固定成本为100万元,每生产1千件需另投入27万元.设该工厂一年内生产这种产品x千件并全部销售完,每千件的销售收入为p(x)万元,且(Ⅰ)写出年利润f(x)(万元)关于年产量x(千件)的函数关系式;(Ⅱ)年产量为多少千件时,该工厂在这种产品的生产中所获得的年利润最大?(注:年利润=年销售收入﹣年总成本)【考点】分段函数的应用.【专题】函数思想;数学模型法;函数的性质及应用.【分析】(Ⅰ)由年利润=年销售收入﹣年总成本,结合p(x),即可得到所求f(x)的解析式;(Ⅱ)讨论0<x≤10时,由导数判断单调性,可得最大值;再讨论x>10时,运用基本不等式求得最大值,进而得到所求f(x)的最大值.【解答】解:(Ⅰ)由,则f(x)=x[p(x)﹣27]﹣100=;(Ⅱ)当0<x≤10时,f'(x)=81﹣x2,令f′(x)=0得x=9∈(0,10](x=﹣9舍去),且当x∈(0,9)时,f′(x)>0;当x∈(9,10)时,f′(x)<0.所以当x=9时,f(x)max=f(9)=386.当x>10时,==380,当且仅当即∈(10,+∞)时取等号.18\n所以当x>10时,f(x)max=380.因为386>380,所以当x=9时,f(x)max=386.答:年产量为9千件时,该工厂在这种产品的生产中所获得的年利润最大.【点评】本题考查函数模型和数学思想的运用,考查分段函数的解析式和最值的求法,注意运用单调性和基本不等式,考查运算能力,属于中档题.21.(14分)设函数,其中a∈R.(Ⅰ)a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)讨论函数y=f(x)的单调性;(Ⅲ)当时,证明对∀x∈(0,2),都有f(x)<0.【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的单调性.【专题】分类讨论;导数的概念及应用;导数的综合应用;不等式的解法及应用.【分析】(Ⅰ)求出导数,求得切线的斜率和切点,可得切线的方程;(Ⅱ)求出导数,求得极值点1,2a﹣1,讨论①当2a﹣1≤0,②当0<2a﹣1<1,③当2a﹣1=1,④当2a﹣1>1,求得单调区间,即可得到结论;(Ⅲ)讨论①当时,②当a=1时,③当a>1时,运用函数的单调性可得(0,2)的最大值小于0,即可得证.【解答】解:(Ⅰ)a=1时,,,∴f'(1)=0.又,∴曲线y=f(x)在点(1,f(1))处的切线方程为.(Ⅱ)f(x)的定义域为(0,+∞),,令f'(x)=0得x=1或x=2a﹣1,①当2a﹣1≤0即时,当x∈(0,1)时,f'(x)<0;当x∈(1,+∞)时,f'(x)>0.②当0<2a﹣1<1即时当x∈(0,2a﹣1)时f'(x)>0;当x∈(2a﹣1,1)时f'(x)<0;当x∈(1,+∞)时f'(x)>0.③当2a﹣1=1即a=1时.④当2a﹣1>1即a>1时,当x∈(0,1)时f'(x)>0;当x∈(1,2a﹣1)时f'(x)<0;当x∈(2a﹣1,+∞)时f'(x)>0.18\n综上所述:当时,f(x)的增区间为(1,+∞),减区间为(0,1);当时,f(x)的增区间为(0,2a﹣1)和(1,+∞);减区间为(2a﹣1,1);当a=1时,f(x)的增区间为(0,+∞),无减区间;当a>1时,f(x)的增区间为(0,1)和(2a﹣1,+∞),减区间为(1,2a﹣1).(Ⅲ)证明:①当时,由(Ⅱ)知:f(x)在(0,2a﹣1)上单调递增,在(2a﹣1,1)上单调递减,在(1,2)上单调递增,所以f(x)≤max{f(2a﹣1),f(2)}.f(2)=2﹣4a+(2a﹣1)ln2=(2a﹣1)(ln2﹣2)<0.f(2a﹣1)==,记,,,又∵,∴g'(a)>0.∴g(a)在上单调递增.∴当时,即成立.又∵,∴2a﹣1>0.所以f(2a﹣1)<0.∴当时,x∈(0,2)时f(x)<0.②当a=1时,f(x)在(0,2)上单调递增,∴f(x)<f(2)=ln2﹣2<0.③当a>1时,由(Ⅱ)知,f(x)在(0,1)上单调递增,在(1,2a﹣1)上单调递减,在(2a﹣1,+∞)上单调递增.故f(x)在(0,2)上只有一个极大值f(1),所以当x∈(0,2)时,f(x)≤max{f(1),f(2)}.,f(2)=2﹣4a+(2a﹣1)ln2=(2a﹣1)(ln2﹣2)<0,∴当a>1时,x∈(0,2)时f(x)<0.综①②③知:当时,对∀x∈(0,2),都有f(x)<0.【点评】本题考查导数的几何意义、用导数研究函数的单调性、恒成立问题、分类讨论的思想方法.属于中档题.18\n18

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 高中 - 语文
发布时间:2022-08-25 20:36:01 页数:18
价格:¥3 大小:744.20 KB
文章作者:U-336598

推荐特供

MORE