首页

福建省漳州市长泰一中2022届高三物理上学期期中试题含解析

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/18

2/18

剩余16页未读,查看更多内容需下载

2022-2022学年福建省漳州市长泰一中高三(上)期中物理试卷一.选择题(1到8题为单选题,9到12题为多选题,每题4分)1.某航母跑道长200m,飞机在航母上滑行的最大加速度为6m/s2,起飞需要的最低速度为50m/s.那么,飞机在滑行前,需要借助弹射系统获得的最小初速度为()A.5m/sB.10m/sC.15m/sD.20m/s2.如图所示,小球用细绳系住,绳的另一端固定于O点.现用水平力F缓慢推动斜面体,小球在斜面上无摩擦地滑动,细绳始终处于直线状态,当小球升到接近斜面顶端时细绳接近水平,此过程中斜面对小球的支持力FN以及绳对小球的拉力FT的变化情况是()A.FN保持不变,FT不断增大B.FN不断增大,FT不断减小C.FN保持不变,FT先增大后减小D.FN不断增大,FT先减小后增大3.一物块静止在粗糙的水平桌面上.从某时刻开始,物块受到一方向不变的水平拉力作用.假设物块与桌面间的最大静摩擦力等于滑动摩擦力.以a表示物块的加速度大小,F表示水平拉力的大小.能正确描述F与a之间的关系的图象是()A.B.C.D.4.如图所示,用完全相同的轻弹簧A、B、C将两个相同的小球连接并悬挂,小球处于静止状态,弹簧A与竖直方向的夹角为30°,弹簧C水平,则弹簧A、C的伸长量之比为()A.:4B.4:C.1:2D.2:15.如图所示,“旋转秋千”中的两个座椅A、B质量相等,通过相同长度的缆绳悬挂在旋转圆盘上.不考虑空气阻力的影响,当旋转圆盘绕竖直的中心轴匀速转动时,下列说法正确的是()-18-\nA.A的速度比B的大B.A与B的向心加速度大小相等C.悬挂A、B的缆绳与竖直方向的夹角相等D.悬挂A的缆绳所受的拉力比悬挂B的小6.火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知()A.太阳位于木星运行轨道的中心B.火星和木星绕太阳运行速度的大小始终相等C.火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方D.相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积7.小行星绕恒星运动,恒星均匀地向四周辐射能量,质量缓慢减小,可认为小行星在绕恒星运动一周的过程中近似做圆周运动.则经过足够长的时间后,小行星运动的()A.半径变大B.速率变大C.角速度变大D.加速度变大8.如图所示,水平木板上有质量m=1.0kg的物块,受到随时间t变化的水平拉力F作用,用力传感器测出相应时刻物块所受摩擦力Ff的大小.取重力加速度g=10m/s2,下列判断正确的是()A.5s内拉力对物块做功为零B.6s~9s内物块的加速度大小为2.0m/s2C.物块与木板之间的动摩擦因数为0.4D.4s末物块所受合力大小为4.0N9.甲、乙两物体在t=0时刻经过同一位置沿x轴运动,其vt图象如图所示,则()A.甲、乙在t=0到t=1s之间沿同一方向运动B.乙在t=0到t=7s之间的位移为零C.甲在t=0到t=4s之间做往复运动D.甲、乙在t=6s时的加速度方向相同-18-\n10.两个共点力Fl、F2大小不同,它们的合力大小为F,则()A.F1、F2同时增大一倍,F也增大一倍B.F1、F2同时增加10N,F也增加10NC.F1增加10N,F2减少10N,F一定不变D.若F1、F2中的一个增大,F不一定增大11.如图所示,从地面上同一位置抛出两小球A、B,分别落在地面上的M、N点,两球运动的最大高度相同.空气阻力不计,则()A.B的加速度比A的大B.B的飞行时间比A的长C.B在最高点的速度比A在最高点的大D.B在落地时的速度比A在落地时的大12.如图所示,楔形木块abc固定在水平面上,粗糙斜面ab和光滑斜面bc与水平面的夹角相同,顶角b处安装一定滑轮.质量分别为M、m(M>m)的滑块,通过不可伸长的轻绳跨过定滑轮连接,轻绳与斜面平行.两滑块由静止释放后,沿斜面做匀加速运动.若不计滑轮的质量和摩擦,在两滑块沿斜面运动的过程中()A.两滑块组成系统的机械能守恒B.重力对M做的功等于M动能的增加C.轻绳对m做的功等于m机械能的增加D.两滑块组成系统的机械能损失等于M克服摩擦力做的功二.实验题(每空2分)13.如图1所示,某组同学借用“探究a与F、m之间的定量关系”的相关实验思想、原理及操作,进行“研究合外力做功和动能变化的关系”的实验:①为达到平衡阻力的目的,取下细绳及托盘,通过调整垫片的位置,改变长木板倾斜程度,根据打出的纸带判断小车是否做__________运动.-18-\n②连接细绳及托盘,放人砝码,通过实验得到图2所示的纸带.纸带上0为小车运动起始时刻所打的点,选取时间间隔为0.1s的相邻计数点A、B、C、D、E、F、G.实验时小车所受拉力为0.2N,小车的质量为0.2kg.请计算小车所受合外力做的功W和小车动能的变化△Ek,补填表中空格(结果保留至小数点后第四位).O﹣BO﹣CO﹣DO﹣EO﹣FW/J0.04320.05720.07340.0915__________△Ek/J0.04300.05700.07340.0907__________分析上述数据可知:在实验误差允许的范围内W=△Ek,与理论推导结果一致.③实验前已测得托盘质量为7.7×10﹣3kg,实验时该组同学放入托盘中的砝码质量应为__________kg(g取9.8m/s2,结果保留至小数点后第三位).14.我国舰载飞机在“辽宁舰”上成功着舰后,某课外活动小组对舰载飞机利用阻拦索着舰的力学问题很感兴趣.他们找来了木板、钢球、铁钉、橡皮条以及墨水,制作了如图所示的装置,准备定量研究钢球在橡皮条阻拦下前进的距离与被阻拦前速率的关系.要达到实验目的,需直接测量的物理量是钢球由静止释放时的__________和在橡皮条阻拦下前进的距离,还必须增加的一种实验器材是__________.忽略钢球所受的摩擦力和空气阻力,重力加速度已知,根据__________定律(定理),可得到钢球被阻拦前的速率.三.计算题15.如图所示,将小砝码置于桌面上的薄纸板上,用水平向右的拉力将纸板迅速抽出,砝码的移动很小,几乎观察不到,这就是大家熟悉的惯性演示实验.若砝码和纸板的质量分别为m1和m2,各接触面间的动摩擦因数均为μ.重力加速度为g.(1)当纸板相对砝码运动时,求纸板所受摩擦力的大小;(2)要使纸板相对砝码运动,求所需拉力的大小.16.质量为m=4kg的小物块静止于水平地面上的A点,现用F=10N的水平恒力拉动物块一段时间后撤去,物块继续滑动一段位移停在B点,A、B两点相距x=20m,物块与地面间的动摩擦因数μ=0.2,g取10m/s2,求:(1)物块在力F作用过程发生位移x1的大小:(2)撤去力F后物块继续滑动的时间t.-18-\n17.如图,一不可伸长的轻绳上端悬挂于O点,下端系一质量m=1.0kg的小球.现将小球拉到A点(保持绳绷直)由静止释放,当它经过B点时绳恰好被拉断,小球平抛后落在水平地面上的C点.地面上的D点与OB在同一竖直线上,已知绳长L=1.0m,B点离地高度H=1.0m,A、B两点的高度差h=0.5m,重力加速度g取10m/s2,不计空气影响,求:(1)地面上DC两点间的距离s;(2)轻绳所受的最大拉力大小.18.蹦床比赛分成预备运动和比赛动作两个阶段.最初,运动员静止站在蹦床上;在预备运动阶段,他经过若干次蹦跳,逐渐增加上升高度,最终达到完成比赛动作所需的高度;此后,进入比赛动作阶段.把蹦床简化为一个竖直放置的轻弹簧,弹力大小F=kx(x为床面下沉的距离,k为常量).质量m=50kg的运动员静止站在蹦床上,床面下沉x0=0.10m;在预备运动中,假定运动员所做的总功W全部用于增加其机械能;在比赛动作中,把该运动员视作质点,其每次离开床面做竖直上抛运动的腾空时间均为△t=2.0s,设运动员每次落下使床面压缩的最大深度均为x1.取重力加速度g=10m/s2,忽略空气阻力的影响.(1)求常量k,并在图中画出弹力F随x变化的示意图;(2)求在比赛动作中,运动员离开床面后上升的最大高度hm;(3)借助F﹣x图象可以确定弹力做功的规律,在此基础上,求x1和W的值.-18-\n2022-2022学年福建省漳州市长泰一中高三(上)期中物理试卷一.选择题(1到8题为单选题,9到12题为多选题,每题4分)1.某航母跑道长200m,飞机在航母上滑行的最大加速度为6m/s2,起飞需要的最低速度为50m/s.那么,飞机在滑行前,需要借助弹射系统获得的最小初速度为()A.5m/sB.10m/sC.15m/sD.20m/s【考点】匀变速直线运动规律的综合运用.【专题】直线运动规律专题.【分析】根据匀变速直线直线运动的速度位移公式求出最小的初速度大小.【解答】解:根据匀变速直线运动的速度位移公式有:则最小的初速度为:m/s=10m/s.故B正确,A、C、D错误.故选:B.【点评】解决本题的关键掌握匀变速直线运动的速度位移公式,并能灵活运用,基础题.2.如图所示,小球用细绳系住,绳的另一端固定于O点.现用水平力F缓慢推动斜面体,小球在斜面上无摩擦地滑动,细绳始终处于直线状态,当小球升到接近斜面顶端时细绳接近水平,此过程中斜面对小球的支持力FN以及绳对小球的拉力FT的变化情况是()A.FN保持不变,FT不断增大B.FN不断增大,FT不断减小C.FN保持不变,FT先增大后减小D.FN不断增大,FT先减小后增大【考点】共点力平衡的条件及其应用.【专题】共点力作用下物体平衡专题.【分析】对小球进行受力分析,重力、支持力、拉力组成一个矢量三角形,由于重力不变、支持力方向不变,又缓慢推动,故受力平衡,只需变动拉力即可,根据它角度的变化,你可以明显地看到各力的变化.【解答】解:先对小球进行受力分析,重力、支持力FN、拉力FT组成一个闭合的矢量三角形,由于重力不变、支持力FN方向不变,且从已知图形知β>θ,且β逐渐变小,趋向于0;故斜面向左移动的过程中,拉力FT与水平方向的夹角β减小,当β=θ时,FT⊥FN,细绳的拉力FT最小,由图可知,随β的减小,斜面的支持力FN不断增大,FT先减小后增大.故D正确.ABC错误.故选:D.-18-\n【点评】本题考察物体的受力分析、共点力的动态平衡问题.物体在三个共点力作用下达到平衡状态,其中一个力的大小和方向均不发生变化时:一个力的方向不变,另一个力方向改变,利用力的三角形法则;另外两个力中,另外两个力方向均改变,利用力的三角形与几何三角形相似.对小球进行受力分析如图所示,则题干描述的动态过程可通过力的三角形边长的变化替代.3.一物块静止在粗糙的水平桌面上.从某时刻开始,物块受到一方向不变的水平拉力作用.假设物块与桌面间的最大静摩擦力等于滑动摩擦力.以a表示物块的加速度大小,F表示水平拉力的大小.能正确描述F与a之间的关系的图象是()A.B.C.D.【考点】牛顿第二定律.【专题】牛顿运动定律综合专题.【分析】对物体受力分析,利用牛顿第二定律列式找出F﹣a的关系式,即可做出选择.【解答】解:物块受力分析如图所示:由牛顿第二定律得;F﹣μmg=ma解得:F=ma+μmgF与a成一次函数关系,故ABD错误,C正确,故选C.【点评】对于此类图象选择题,最好是根据牛顿第二定律找出两个物理量之间的函数关系,图象变显而易见.4.如图所示,用完全相同的轻弹簧A、B、C将两个相同的小球连接并悬挂,小球处于静止状态,弹簧A与竖直方向的夹角为30°,弹簧C水平,则弹簧A、C的伸长量之比为()A.:4B.4:C.1:2D.2:1-18-\n【考点】共点力平衡的条件及其应用;力的合成与分解的运用;胡克定律.【专题】共点力作用下物体平衡专题.【分析】将两球和弹簧B看成一个整体,分析受力情况,根据平衡条件求出弹簧A、C拉力之比,即可由胡克定律得到伸长量之比.【解答】解:将两球和弹簧B看成一个整体,整体受到总重力G、弹簧A和C的拉力,如图,设弹簧A、C的拉力分别为F1和F2.由平衡条件得知,F2和G的合力与F1大小相等、方向相反则得:F2=F1sin30°=0.5F1.根据胡克定律得:F=kx,k相同,则弹簧A、C的伸长量之比等于两弹簧拉力之比,即有xA:xC=F1:F2=2:1故选:D.【点评】本题首先要选择好研究对象,其次正确分析受力情况,作出力图,再由平衡条件求解.5.如图所示,“旋转秋千”中的两个座椅A、B质量相等,通过相同长度的缆绳悬挂在旋转圆盘上.不考虑空气阻力的影响,当旋转圆盘绕竖直的中心轴匀速转动时,下列说法正确的是()A.A的速度比B的大B.A与B的向心加速度大小相等C.悬挂A、B的缆绳与竖直方向的夹角相等D.悬挂A的缆绳所受的拉力比悬挂B的小【考点】向心力;线速度、角速度和周期、转速.【专题】匀速圆周运动专题.【分析】AB两个座椅具有相同的角速度,分别代入速度、加速度、向心力的表达式,即可求解.【解答】解:AB两个座椅具有相同的角速度.A:根据公式:v=ω•r,A的运动半径小,A的速度就小.故A错误;B:根据公式:a=ω2r,A的运动半径小,A的向心加速度就小,故B错误;C:如图,对任一座椅,受力如图,由绳子的拉力与重力的合力提供向心力,则得:mgtanθ=mω2r,则得tanθ=,A的半径r较小,ω相等,可知A与竖直方向夹角θ较小,故C错误.-18-\nD:A的向心加速度就小,A的向心力就小,A对缆绳的拉力就小,故D正确.故选:D.【点评】解决本题的关键知道A、B的角速度大小相等,知道线速度、角速度、向心加速度、向心力之间的关系,并能灵活运用.6.火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知()A.太阳位于木星运行轨道的中心B.火星和木星绕太阳运行速度的大小始终相等C.火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方D.相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积【考点】万有引力定律及其应用.【专题】万有引力定律在天体运动中的应用专题.【分析】熟记理解开普勒的行星运动三定律:第一定律:所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上.第二定律:对每一个行星而言,太阳行星的连线在相同时间内扫过的面积相等.第三定律:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等.【解答】解:A、第一定律的内容为:所有行星分别沿不同大小的椭圆轨道绕太阳运动,太阳处于椭圆的一个焦点上.故A错误;B、第二定律:对每一个行星而言,太阳行星的连线在相同时间内扫过的面积相等.行星在此椭圆轨道上运动的速度大小不断变化,故B错误;C、若行星的公转周期为T,则常量K与行星无关,与中心体有关,故C正确;D、第二定律:对每一个行星而言,太阳行星的连线在相同时间内扫过的面积相等,是对同一个行星而言,故D错误;故选C.【点评】正确理解开普勒的行星运动三定律是解答本题的关键.7.小行星绕恒星运动,恒星均匀地向四周辐射能量,质量缓慢减小,可认为小行星在绕恒星运动一周的过程中近似做圆周运动.则经过足够长的时间后,小行星运动的()A.半径变大B.速率变大C.角速度变大D.加速度变大【考点】万有引力定律及其应用.【专题】万有引力定律的应用专题.【分析】恒星均匀地向四周辐射能量,质量缓慢减小,二者之间万有引力减小,小行星做离心运动,即半径增大,又小行星绕恒星运动做圆周运动,万有引力提供向心力,可分析线速度、角速度、加速度等.【解答】-18-\n解:恒星均匀地向四周辐射能量,质量缓慢减小,二者之间万有引力减小,小行星做离心运动,即半径增大,故A正确;小行星绕恒星运动做圆周运动,万有引力提供向心力,设小行星的质量为m,恒星的质量为M,则,即,M减小,r增大,故v减小,所以B错误;v=ωr,v减小,r增大,故ω减小,所以C错误;由得:M减小,r增大,所以a减小,故D错误;故选A.【点评】关于万有引力与航天,记住作圆周运动万有引力等于向心力;离心运动,万有引力小于向心力;向心运动,万有引力大于向心力.8.如图所示,水平木板上有质量m=1.0kg的物块,受到随时间t变化的水平拉力F作用,用力传感器测出相应时刻物块所受摩擦力Ff的大小.取重力加速度g=10m/s2,下列判断正确的是()A.5s内拉力对物块做功为零B.6s~9s内物块的加速度大小为2.0m/s2C.物块与木板之间的动摩擦因数为0.4D.4s末物块所受合力大小为4.0N【考点】牛顿第二定律;功的计算.【专题】功的计算专题.【分析】结合拉力和摩擦力的图线知,物体先保持静止,然后做匀加速直线运动,结合牛顿第二定律求出加速度的大小和动摩擦因数的大小.【解答】解:A、在0~4s内,物体所受的摩擦力为静摩擦力,4s末开始运动,则5s内位移不为零,则拉力做功不为零.故A错误;B、根据牛顿第二定律得,6s~9s内物体做匀加速直线运动的加速度a=.f=μmg,解得.故B正确,C错误.D、4s末拉力为4N,摩擦力为4N,合力为零.故D错误;故选:B.【点评】解决本题的关键通过图线分析出物体的运动,根据牛顿第二定律进行求解;并明确功的计算方法.9.甲、乙两物体在t=0时刻经过同一位置沿x轴运动,其vt图象如图所示,则()-18-\nA.甲、乙在t=0到t=1s之间沿同一方向运动B.乙在t=0到t=7s之间的位移为零C.甲在t=0到t=4s之间做往复运动D.甲、乙在t=6s时的加速度方向相同【考点】匀变速直线运动的图像.【专题】运动学中的图像专题.【分析】本题应抓住速度时间图象中速度的正负表示速度的方向,图象与坐标轴所围的“面积”表示物体的位移,斜率等于物体的加速度进行分析.【解答】解:A、在t=0到t=ls之间,甲始终沿正方向运动,而乙先沿负方向运动后沿正方向运动,故A错误;B、根据速度图象与坐标轴所围的“面积”表示物体的位移,t轴上方的“面积”表示位移是正值,t轴下方的“面积”表示位移是负值,则知在t=0到t=7s之间乙的位移为零.故B正确;C、在t=0到t=4s之间,甲的速度始终为正值,说明甲一直沿正方向做单向直线运动.故C错误;D、根据斜率等于物体的加速度知,甲、乙在t=6s时的加速度方向都沿负方向,方向相同.故D正确.故选:BD.【点评】本题关键要掌握速度图象的数学意义:图象与坐标轴所围的“面积”表示物体的位移,斜率等于物体的加速度进行分析.10.两个共点力Fl、F2大小不同,它们的合力大小为F,则()A.F1、F2同时增大一倍,F也增大一倍B.F1、F2同时增加10N,F也增加10NC.F1增加10N,F2减少10N,F一定不变D.若F1、F2中的一个增大,F不一定增大【考点】力的合成.【专题】受力分析方法专题.【分析】两个大小不等的共点力F1、F2,根据平行四边形定则表示出合力进行求解.【解答】解:A、根据平行四边形定则,F1、F2同时增大一倍,F也增大一倍,故A正确B、Fl、F2方向相反,F1、F2同时增加10N,F不变,故B错误C、Fl、F2方向相反,F1增加10N,F2减少10N,F可能增加20N,故C错误D、Fl、F2方向相反,若F1、F2中的一个增大,F不一定增大,故D正确故选:AD.【点评】解决本题关键知道力的合成与分解遵循平行四边形定则,会根据平行四边形定则去求合力或分力.-18-\n11.如图所示,从地面上同一位置抛出两小球A、B,分别落在地面上的M、N点,两球运动的最大高度相同.空气阻力不计,则()A.B的加速度比A的大B.B的飞行时间比A的长C.B在最高点的速度比A在最高点的大D.B在落地时的速度比A在落地时的大【考点】机械能守恒定律.【专题】机械能守恒定律应用专题.【分析】由题知,两球均做斜抛运动,运用运动的分解法可知:水平方向做匀速直线运动,竖直方向做竖直上抛运动,两球的加速度相同,由竖直高度相同,由运动学公式分析竖直方向的初速度关系,即可知道水平初速度的关系.两球在最高点的速度等于水平初速度.由速度合成分析初速度的关系,即可由机械能守恒知道落地速度的大小关系.【解答】解:A、不计空气阻力,两球的加速度都为重力加速度g.故A错误.B、两球都做斜抛运动,竖直方向的分运动是竖直上抛运动,根据运动的对称性可知,两球上升和下落的时间相等,而下落过程,由t=知下落时间相等,则两球运动的时间相等.故B错误.C、h=vyt﹣,最大高度h、t相同,则知,竖直方向的初速度大小相等,由于A球的初速度与水平方向的夹角大于B球的竖直方向的初速度,由vy=v0sinα(α是初速度与水平方向的夹角)得知,A球的初速度小于B球的初速度,两球水平方向的分初速度为v0cosα=vycotα,由于B球的初速度与水平方向的夹角小,所以B球水平分初速度较大,而两球水平方向都做匀速直线运动,故B在最高点的速度比A在最高点的大.故C正确.D、根据速度的合成可知,B的初速度大于A球的初速度,运动过程中两球的机械能都守恒,则知B在落地时的速度比A在落地时的大.故D正确.故选CD【点评】本题考查运用运动的合成与分解的方法处理斜抛运动的能力,对于竖直上抛的分速度,可根据运动学公式和对称性进行研究.12.如图所示,楔形木块abc固定在水平面上,粗糙斜面ab和光滑斜面bc与水平面的夹角相同,顶角b处安装一定滑轮.质量分别为M、m(M>m)的滑块,通过不可伸长的轻绳跨过定滑轮连接,轻绳与斜面平行.两滑块由静止释放后,沿斜面做匀加速运动.若不计滑轮的质量和摩擦,在两滑块沿斜面运动的过程中()A.两滑块组成系统的机械能守恒B.重力对M做的功等于M动能的增加C.轻绳对m做的功等于m机械能的增加-18-\nD.两滑块组成系统的机械能损失等于M克服摩擦力做的功【考点】机械能守恒定律;动能定理的应用.【专题】动能定理的应用专题.【分析】机械能守恒的条件是只有重力或系统内弹力做功,发生的能量转化为重力势能和弹性势能的转化,不产生其他形式的能量.功与能量转化相联系,是能量转化的量度.【解答】解:A、由于“粗糙斜面ab”,故两滑块组成系统的机械能不守恒,故A错误;B、由动能定理得,重力、拉力、摩擦力对M做的总功等于M动能的增加,故B错误;C、除重力弹力以外的力做功,将导致机械能变化,故C正确;D、除重力弹力以外的力做功,将导致机械能变化,摩擦力做负功,故造成机械能损失,故D正确;故选:CD.【点评】关键理解透机械能守恒的条件和功能关系,重力做功对应重力势能变化、弹力做功对应弹性势能变化、合力做功对应动能变化、除重力或系统内的弹力做功对应机械能变化.二.实验题(每空2分)13.如图1所示,某组同学借用“探究a与F、m之间的定量关系”的相关实验思想、原理及操作,进行“研究合外力做功和动能变化的关系”的实验:①为达到平衡阻力的目的,取下细绳及托盘,通过调整垫片的位置,改变长木板倾斜程度,根据打出的纸带判断小车是否做匀速直线运动.②连接细绳及托盘,放人砝码,通过实验得到图2所示的纸带.纸带上0为小车运动起始时刻所打的点,选取时间间隔为0.1s的相邻计数点A、B、C、D、E、F、G.实验时小车所受拉力为0.2N,小车的质量为0.2kg.请计算小车所受合外力做的功W和小车动能的变化△Ek,补填表中空格(结果保留至小数点后第四位).O﹣BO﹣CO﹣DO﹣EO﹣FW/J0.04320.05720.07340.09150.1115△Ek/J0.04300.05700.07340.09070.1105分析上述数据可知:在实验误差允许的范围内W=△Ek,与理论推导结果一致.③实验前已测得托盘质量为7.7×10﹣3kg,实验时该组同学放入托盘中的砝码质量应为0.015kg(g取9.8m/s2,结果保留至小数点后第三位).【考点】探究加速度与物体质量、物体受力的关系.【专题】实验题;牛顿运动定律综合专题.【分析】①为保证拉力等于小车受到的合力,需平衡摩擦力;②合力的功等于拉力与位移的乘积;F点速度等于EG段的平均速度,求解出速度后再求解动能;③对砝码盘和砝码整体从O到F过程运用动能定理列式求解即可.-18-\n【解答】解:①为保证拉力等于小车受到的合力,需平衡摩擦力,即将长木板左端适当垫高,轻推小车,小车做匀速直线运动;②拉力的功为:W=F•xOF=0.2N×0.5575m=0.1115J;F点的瞬时速度为:;故F点的动能为:;③砝码盘和砝码整体受重力和拉力,从O到F过程运用动能定理,有:[(M+m)g﹣F]xOF=;代入数据解得:m=0.015kg;故答案为:①匀速直线;②0.1115,0.1105;③0.015.【点评】本题关键是明确实验原理,会通过纸带求解速度和加速度,不难.14.我国舰载飞机在“辽宁舰”上成功着舰后,某课外活动小组对舰载飞机利用阻拦索着舰的力学问题很感兴趣.他们找来了木板、钢球、铁钉、橡皮条以及墨水,制作了如图所示的装置,准备定量研究钢球在橡皮条阻拦下前进的距离与被阻拦前速率的关系.要达到实验目的,需直接测量的物理量是钢球由静止释放时的距水平木板的高度和在橡皮条阻拦下前进的距离,还必须增加的一种实验器材是刻度尺.忽略钢球所受的摩擦力和空气阻力,重力加速度已知,根据机械能守恒定律(定理),可得到钢球被阻拦前的速率.【考点】机械能守恒定律.【专题】机械能守恒定律应用专题.【分析】根据机械能守恒定律,通过小球滚下的高度,求出被橡皮条阻拦前的速度,用刻度尺量出小球的高度和在橡皮条阻拦下前进的距离,从而得出它们的关系.【解答】解:在该实验中,量出钢球由静止释放时距水平木板的高度,以及在橡皮条阻拦下前进的距离,根据机械能守恒定律得出被橡皮条阻拦前的速度,从而定量研究钢球在橡皮条阻拦下前进的距离与被阻拦前速率的关系.故答案为:距水平木板的高度;刻度尺;机械能守恒.【点评】解决本题的关键知道小球下滑的过程中,只有重力做功,机械能守恒,通过高度可以求出钢球的速度.三.计算题15.如图所示,将小砝码置于桌面上的薄纸板上,用水平向右的拉力将纸板迅速抽出,砝码的移动很小,几乎观察不到,这就是大家熟悉的惯性演示实验.若砝码和纸板的质量分别为m1和m2,各接触面间的动摩擦因数均为μ.重力加速度为g.(1)当纸板相对砝码运动时,求纸板所受摩擦力的大小;(2)要使纸板相对砝码运动,求所需拉力的大小.-18-\n【考点】共点力平衡的条件及其应用;力的合成与分解的运用.【专题】计算题;定性思想;推理法;共点力作用下物体平衡专题.【分析】(1)明确纸板对地面的压力,根据滑动摩擦力公式可求得纸板受到的摩擦力;(2)利用隔离法分别对砝码和纸板进行受力分析,列运动方程,按纸板抽出前后运动距离的不同列式联立求解.【解答】解:(1)当纸板相对砝码运动时,砝码和纸板之间的摩擦力:f1=μm1g桌面对纸板的摩擦力:f2=μ(m1+m2)g纸板所受摩擦力的大小:f=f1+f2=μ(2m1+m2)g(2)当纸板相对砝码运动时,设砝码的加速度为a1,纸板的加速度为a2,则有:f1=m1a1得:F﹣f1﹣f2=m2a2发生相对运动需要纸板的加速度大于砝码的加速度,即:a2>a1所以:F=f1+f2+m2a2>f1+f2+m2a1=μm1g+μ(m1+m2)g+μm2g=2μ(m1+m2)g即:F>2μ(m1+m2)g答:(1)纸板所受摩擦力的大小为μ(2m1+m2)g;(2)所需拉力的大小F>2μ(m1+m2)g;【点评】本题考查牛顿第二定律及受力分析规律,要注意正确确定研究对象,对物体做好受力分析,再根据相应的物理规律分析求解.16.质量为m=4kg的小物块静止于水平地面上的A点,现用F=10N的水平恒力拉动物块一段时间后撤去,物块继续滑动一段位移停在B点,A、B两点相距x=20m,物块与地面间的动摩擦因数μ=0.2,g取10m/s2,求:(1)物块在力F作用过程发生位移x1的大小:(2)撤去力F后物块继续滑动的时间t.【考点】动能定理的应用.【专题】动能定理的应用专题.【分析】(1)对A到B的整个过程运用动能定理列式求解即可;(2)先对A到B过程运用动能定理列式求解出C点速度,然后对C到B过程根据牛顿第二定律求解加速度,最后对C到B过程运用平均速度公式列式求解时间.【解答】解:(1)取小物块为研究对象,从A到B过程的整个运动过程的拉力与摩擦力做功,根据动能定理,有:Fx1﹣fx=0其中:f=μmg联立解得:x1=16m;-18-\n(2)对A到C过程运用动能定理,有:Fx1﹣μmg;解得:v=4m/sC到B过程,根据牛顿第二定律,有:μmg=ma′,解得a′=μg=2m/s2;根据平均速度公式,有:v=a′t,解得:t=2s;答:(l)物块在力F作用过程发生位移xl的大小为16m;(2)撤去力F后物块继续滑动的时间t为2s.【点评】本题关键灵活地选择运动过程运用动能定理列式求解,求解时间要根据运动学公式或者动量定理列式求解.17.如图,一不可伸长的轻绳上端悬挂于O点,下端系一质量m=1.0kg的小球.现将小球拉到A点(保持绳绷直)由静止释放,当它经过B点时绳恰好被拉断,小球平抛后落在水平地面上的C点.地面上的D点与OB在同一竖直线上,已知绳长L=1.0m,B点离地高度H=1.0m,A、B两点的高度差h=0.5m,重力加速度g取10m/s2,不计空气影响,求:(1)地面上DC两点间的距离s;(2)轻绳所受的最大拉力大小.【考点】机械能守恒定律;牛顿第二定律;向心力.【专题】机械能守恒定律应用专题.【分析】(1)从A到B由动能定理可得B位置时的速度,之后做平抛运动,由平抛规律求解;(2)在B位置,由牛顿第二定律可求轻绳所受的最大拉力大小.【解答】解:(1)设小球在B点速度为v,对小球从A到B由动能定理得:mgh=mv2①绳子断后,小球做平抛运动,运动时间为t,则有:H=②DC间距离:s=vt解得:s=m≈1.414m(2)在B位置,设绳子最大力量为F,由牛顿第二定律得:F﹣mg=④-18-\n联立①④得:F=2mg=2×1×10N=20N根据牛顿第三定律,有F'=F,因而轻绳所受的最大拉力为20N.答(1)DC两点间的距离1.414m;(2)轻绳所受的最大拉力20N.【点评】关键是建立物体运动的情境,寻找物理模型,本题为圆周和平抛模型的组合.18.蹦床比赛分成预备运动和比赛动作两个阶段.最初,运动员静止站在蹦床上;在预备运动阶段,他经过若干次蹦跳,逐渐增加上升高度,最终达到完成比赛动作所需的高度;此后,进入比赛动作阶段.把蹦床简化为一个竖直放置的轻弹簧,弹力大小F=kx(x为床面下沉的距离,k为常量).质量m=50kg的运动员静止站在蹦床上,床面下沉x0=0.10m;在预备运动中,假定运动员所做的总功W全部用于增加其机械能;在比赛动作中,把该运动员视作质点,其每次离开床面做竖直上抛运动的腾空时间均为△t=2.0s,设运动员每次落下使床面压缩的最大深度均为x1.取重力加速度g=10m/s2,忽略空气阻力的影响.(1)求常量k,并在图中画出弹力F随x变化的示意图;(2)求在比赛动作中,运动员离开床面后上升的最大高度hm;(3)借助F﹣x图象可以确定弹力做功的规律,在此基础上,求x1和W的值.【考点】动能定理的应用;功能关系.【专题】作图题;分割思想;图析法;动能定理的应用专题.【分析】(1)根据胡克定律求出劲度系数,抓住弹力与形变量成正比,作出弹力F随x变化的示意图.(2)根据竖直上抛运动的对称性,求出人在空中下落的时间,根据自由落体运动的位移时间公式求出运动员离开床面后上升的最大高度.(3)根据图线围成的面积表示弹力做功,得出弹力做功的表达式,根据动能定理求出弹力做功,从而求出x1的值.【解答】解:(1)根据胡克定律得,mg=kx0,解得:k==N/m=5000N/m.F随x的变化示意图如图所示.(2)根据竖直上抛运动的对称性,知运动员下落的时间为1s.则上升的最大高度hm=gt2=×10×1m=5m.(3)人静止时弹性势能k=25J运动员与弹簧接触时的速度v=gt=10m/s.以弹簧面为参考面,根据动能定理得k﹣mgx0+W=人从最高处5m下落到最低处:kx12=mg(h+x1)联立两式解得x1≈1.1m.则W=2525J.答:(1)常量k=5000N/m,弹力F随x变化的示意图如图所示.(2)运动员离开床面后上升的最大高度为5m.(3)x1和W的值分别为1.1m和2525J.-18-\n【点评】解决本题的关键知道运动员在整个过程中的运动情况,结合运动学公式、动能定理等知识进行求解.-18-

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 高中 - 物理
发布时间:2022-08-25 11:53:32 页数:18
价格:¥3 大小:433.83 KB
文章作者:U-336598

推荐特供

MORE