首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
试卷
>
高中
>
数学
>
江苏省苏州市2022届高三数学高考考前模拟卷(PDF版带答案)
江苏省苏州市2022届高三数学高考考前模拟卷(PDF版带答案)
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/12
2
/12
3
/12
4
/12
5
/12
6
/12
7
/12
8
/12
9
/12
10
/12
剩余2页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
2021~2022学年度苏州市高三考前模拟试卷数学试卷一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。21.设集合A{xN|xx2≤0},B{1123},,,,则ABA.{10},B.{12},C.{123},,D.{0123},,,222.在复平面内,设z1i(i是虚数单位),则复数z对应的点位于zA.第一象限B.第二象限C.第三象限D.第四象限3.已知单位向量a,b,c满足2a3b4c0,则ab2971A.B.C.0D.12844.已知msin20tan203,则实数m的值为A.3B.2C.4D.85.为加快新冠病毒检测效率,检测机构采取“10合1检测法”,即将10个人的拭子样本合并检测,若为阴性,则可以确定所有样本都是阴性的;若为阳性,则还需要对本组的每个人再做检测.现对来自重点管控区的100人进行核酸检测,若有2人感染病毒,则随机将其平均分成10组后这两名感染患者在同一组的概率为1111A.B.C.D.1512111026.已知奇函数fx()(x2)(xaxb)(a0)在点(afa,())处的切线方程为yfa(),则b23234343A.11或B.或C.2或2D.或333322xy7.已知FF,是椭圆1(m1)的左、右焦点,点A是椭圆上的一个动点,若12mm13△AFF的内切圆半径的最大值是,则椭圆的离心率为12312A.21B.C.D.3122118.已知x2,yee,z,则xyz,,的大小关系为A.xyzB.xzyC.yxzD.yzx高三数学第1页(共6页)\n二、选择题:本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,部分选对的得2分,有选错的得0分。9.已知投资AB,两种项目获得的收益分别为XY,,分布列如下表,则X/百万102Y/百万012P0.2m0.6P0.30.4nA.mn0.5B.E(2X1)4C.投资两种项目的收益期望一样多D.投资A项目的风险比B项目高10.右图是函数fx()Asin(x)(A0,0)的部分图象,则A.fx()的最小正周期为ππB.将函数yfx()的图象向右平移个单位后,得到的函数3为奇函数5C.xπ是函数yfx()的一条对称轴6(第10题图)54D.若函数yftx()(t0)在[0π],上有且仅有两个零点,则t[,)6311.某酒店大堂的壁灯的外观是将两个正三棱锥的底面重合构成的一A个六面体(如图),已知BCAB1,现已知三棱锥EBCD的高大于三棱锥ABCD的高,则BDA.AB∥平面DCEC7B.二面角ABCE的余弦值小于9EC.该六面体存在外接球(第11题图)D.该六面体存在内切球22*12.在数列{}an中,若anan1p(n≥2,nN,p为非零常数),则称{}an为“等方差数列”,p称为“公方差”,下列对“等方差数列”的判断正确的是nA.{(1)}是等方差数列2B.若正项等方差数列{}a的首项a1,且a,,aa是等比数列,则a2n1n1125nC.等比数列不可能为等方差数列D.存在数列{}a既是等方差数列,又是等差数列n高三数学第2页(共6页)\n三、填空题:本题共4小题,每小题5分,共20分。113.在正项等比数列{}a中,a,aa9,记数列{}a的前n项的积为T,若n124nn3T(11000),,请写出一个满足条件的n的值为▲.n22xy14.已知双曲线1(a0,b0)的左、右焦点分别为FF,,过F的直线与圆22122ab222xya相切,且与双曲线的左支交于x轴上方的一点P,当PFFF时直线PF1122的斜率为▲.15.函数fx()ln|||xx1|,若函数yfx()m有三个零点,则实数m的值为▲.16.如图,已知四面体ABCD中,△ABD和△BCD都是等腰A直角三角形,AB2,BADCBD.若四面体2BDABCD外接球的表面积为8,则此时二面角ABDC的大小为▲;若二面角ABDC为时,点M为线段C3(第16题图)CD上一点,则AM的最小值为▲.(本小题第一空2分,第二空3分)四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。17.(10分)2223bsinAsinBsinCa在①(acb)sinBac且B;②3a;③这241cosBsinAsinCbc三个条件中任选一个,补充在下面的问题中,并解答问题.问题:在△ABC中,角ABC,,的对边分别为abc,,,且________.(1)求B;(2)若D为边AC的中点,且a3,c4,求中线BD长.▲▲▲高三数学第3页(共6页)\n18.(12分)如图,在数轴上,一个质点在外力的作用下,从原点O出发,每次等可能地向左或向右移动一个单位,质点到达位置的数字记为X.(第18题图)(1)若该质点共移动2次,位于原点O的概率;(2)若该质点共移动6次,求该质点到达数字X的分布列和数学期望.▲▲▲19.(12分)1111*1已知数列{}a满足aaaann(N),{}的前n项和为S.n12233nnn3333an(1)求数列{}a的通项公式;n11(2)设bloga,数列{}的前n项和为T,证明:TS.n3nnnn1bbb2nn1n2▲▲▲高三数学第4页(共6页)\n20.(12分)如图,在四棱锥PABCD中,已知侧面PCDP为正三角形,底面ABCD为直角梯形,ABCD∥,NADC90,ABAD3,CD4,点MN,分别在线段AB和PD上,且CDAM2MBDN,2NP.(1)求证PM∥平面ACN;AMB3(第20题图)(2)设二面角PCDA的余弦值为,3求直线PC和平面PAB所成角的大小.▲▲▲21.(12分)x已知aR,函数fx()easin(xx[0,]).2(1)讨论fx()的导函数fx()零点的个数;31(2)若fx()≥a,求a的取值范围.2▲▲▲高三数学第5页(共6页)\n22.(12分)在平面直角坐标系xOy中,已知F(10),,点M到直线x3的距离比到点F的距离大2,记M的轨迹为C.(1)求C的方程;(2)过F的直线l交C于AB,两点,过点A作C的切线,交x轴于点P,直线BP交C于点Q(不同于点B),直线AQ交x轴于点N.若S△ANF2S△PNQ,求直线l的方程.▲▲▲高三数学第6页(共6页)\n2021-2022学年度苏州市高三考前模拟试卷数学试卷参考答案一、选择题:本题共8小题,每小题5分,共40分.题号12345678答案BADCCDBD二、选择题:本题共4小题,每小题5分,共20分.题号9101112答案ACDADBDBC三、填空题:本题共4小题,每小题5分,共20分.31413.4(答案不唯一)14.15.216.;424四、解答题:本题共6小题,共70分.17.(10分)2223222解:(1)若选①:(acb)sinBac,且acb2accosB,233所以2accosBsinBac,所以sin2B.··········································4分222又B,所以2B2,所以2B,所以B.·······················6分4233sinBsinA若选②:由正弦定理得3sinA,因为sinA0,1cosB3所以sinB33cosB,即sin(B).··········································4分3242由0B,B,所以B,所以B.······················6分333333bca222若选③:由正弦定理得,即acbac,acbc222acbac1由余弦定理得cosB,··············································4分2ac2ac2又0B,所以B.·····································································6分3222(2)在△ABC中,由余弦定理得bac2accosB9161213,所以b23,·········································································································8分高三数学参考答案第1页(共6页)\n22AC又BABC(BDDA)(BDDC)BD,421339所以34cosBD,所以中线BD长为.·································10分34218.(12分)解:(1)记“质点位于原点O的位置”的事件为A,1C12则P(A).2221答:质点移动2次后位于原点O的概率为.············································3分2(2)随机变量X可能取得的值为6,4,2,0,-2,-4,-6,012C1C6C15666则P(X6),P(X4),P(X2),6662642642643456C20C15C6C16666P(X0),P(X2),P(X4),P(X6).6666264264264264········································································································10分随机变量X的分布列如下:X6420-2-4-61615201561P646464646464641615201561E(X)6420(2)(4)(6)0.····12分6464646464646419.(12分)解:(1)当n1时,a13,1111当n≥2时,aaaan①,12233nn33331111aaaan1②,12233n1n133331n由①-②得nann(n1)1,即an3(n≥2).···································3分3n*当n1时也成立,所以数列{an}的通项公式为an3(nN).·····················4分11n1[1()]n3311(2)证明:由(1)知an3,所以Sn12(13n1),················6分13n因为blogalog3n,n3n3高三数学参考答案第2页(共6页)\n11111所以[],·························8分bbbn(n1)(n2)2n(n1)(n1)(n2)n1n2n31111111111所以T[][],n212232334n(n1)(n1)(n2)22(n1)(n2)12所以2T[1].································································9分n2(n1)(n2)因为n1n1n1012n(n1)(n1)(n2)32(11)≥CCC1(n1),n1n1n12212111所以2Tn[1]Sn(1n1),所以TnSn.···················12分2(n1)(n2)23220.(12分)解:(1)证明:连接MD,交AC于E.AM因为2,AB3,所以AM2,MB1.MBDECD因为AB∥CD,所以2.EMAMDNDEDN又2,所以,所以PM∥NE.······2分NPEMNP又NE平面ACN,PM平面ACN,所以PM∥平面ACN.·······················4分(2)取CD中点F,连接MF,PF.1因为△PCD为正三角形,所以PF⊥CD,且PF23,DFCD2AM.2又AM∥DF,所以四边形AMFD为平行四边形.又ADC90,所以四边形AMFD为矩形,所有MF⊥CD,且MF3.又PF⊥CD,MFPFF,MF,PF平面PMF,所以CD⊥平面PMF.又CD平面ABCD,所以平面PMF⊥平面ABCD.过P作MF的垂线交MF于点O,过O作直线平行于CD交BC于点G,则OM,OG,OP两两相互垂直,则以OM,OG,OP分别z为x,y,z轴,建立如图所示的空间直角坐标系O-Pxyz.·····················································6分N又MF⊥CD,且MF3,PF⊥CD,MFFM=F,F所以MFP为二面角P-CD-A的平面角.DCOF3O于是cosMFP.GyPF3AxMB高三数学参考答案第3页(共6页)\n因为PF23,所以OF2,且OP22,所以P(0,0,2),因为C(2,2,0),所以CP(2,2,22).··············································8分又A(1,2,0),B(1,1,0),P(0,0,2),则AB(0,3,0),AP(1,2,22).mAB,mAB0,设m(a,b,c)为平面PAB的一个法向量,则即mAP,mAP0,3b0,所以令c1,则a22,所以m(22,0,1).··········10分a2b22c0,π设直线AC与平面PAB所成的角为(0≤),2mCP622则sin|cosCP,m|||||,|m||CP|432因为0≤,所以直线AC与平面PAB所成角的大小为.····················12分24另解:(2)设点C到平面PAB的距离为h,结合点C到平面PAB的距离等于点F到平面PAB的距离,而△PMF为等腰三角形,MPMF,所以点F到平面PAB的距离等于点PO22,222所以sin=,故.42421.(12分)xx解:(1)令g(x)f(x)eacosx,g(x)easinx.x若a1,则f(x)eacosx110,所以f(x)的零点个数为0;x若a1,g(x)esinx0,所以f(x)在[0,]上单调递增,20又f(0)ecos0110,所以f(x)的零点个数为1;x若a1,g(x)easinx0,所以f(x)在[0,]上单调递增,2又f(0)1a0,f()e20,所以f(x)的零点个数为1.····················4分2(2)由(1)知:x若a≤1,f(x)eacosx≥0,故f(x)在[0,]上单调递增,23131所以f(x)≥f(0)1≥a,所以a≤1满足题意;······················6分22高三数学参考答案第4页(共6页)\nx若a1,存在唯一x(0,),使得f(x)e0acosx0,······················7分0002且当x(0,x)时,f(x)0,当x(x,)时,f(x)0,002所以f(x)在(0,x)上单调递减,在(x,)上单调递增.002x31所以f(x)f(x)e0asinxacosxasinx≥a,·····················9分min00002625化简得cos(x0)≥cos,又x0(0,),所以x0(0,],·······10分441226cosx1cosx30易证y在(0,)上单调递减,所以[,1),ex6aex02e623解得a(1,e6].323综上所述,a的取值范围为(,e6].···············································12分322.(12分)解:(1)因为点M到直线x3的距离比到点F的距离大2,所以M到直线x1的距离等于到F(1,0)的距离,2所以M的轨迹是以F(1,0)为焦点,x1为准线的抛物线,方程为y4x.·········································································································3分2222(2)设A(s,2s),B(t,2t),Q(r,2r)(tr),点A处的切线方程为yk(xs)2s,2yk(xs)2s,2428s联立方程组得yy4s0,2y4x,kk4228s11由()4(4s)0,解得k,可知切线为yxs,················5分kkss令y0,得P(s2,0).设直线l的方程为xmy1,2y4x,2联立方程组得y4my40,所以yAyB4.xmy1,2设直线PQ的方程为xnys,2y4x,222联立方程组得y4ny4s0,所以yPyQ4s.2xnys,高三数学参考答案第5页(共6页)\n213所以2s2t4,2r2t4s,得t,rs,········································8分s1263又B,Q在抛物线上,得B(,),Q(s,2s)(s1).····························9分2ss322s4所以直线AQ的方程为yx,令y0,得N(s,0).22s(1s)1s由2141423SANFSPNQ,得|(1s)||2s|2(ss)|2s|,····························10分2221解得s,得A(,2).22所以直线l的方程为y22x22或y22x22.····························12分高三数学参考答案第6页(共6页)
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
江苏省苏州市2022届高三生物考前模拟试题(PDF版附解析)
江苏省苏州市2022届高三地理高考考前模拟卷(Word版带答案)
江苏省苏州市2022届高三生物高考考前模拟卷(Word版带答案)
江苏省苏州市2022届高三历史高考考前模拟卷(Word版带答案)
江苏省苏州市2022届高三化学高考考前模拟卷(Word版带答案)
江苏省苏州市2022届高三政治高考考前模拟卷(Word版带答案)
江苏省苏州市2022届高三物理高考考前模拟卷(Word版带答案)
江苏省苏州市2022届高三英语高考考前模拟卷(Word版带答案)
江苏省扬州市2022届高三数学考前调研试题(B卷)(PDF版带解析)
江苏省苏州市2022届高三语文高考考前模拟卷(Word版带答案)
文档下载
收藏
所属:
高中 - 数学
发布时间:2022-06-16 10:02:43
页数:12
价格:¥3
大小:877.11 KB
文章作者:随遇而安
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划