首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
二轮专题
>
【创新设计】高考数学 第七篇 第1讲 不等关系与不等式限时训练 新人教A版
【创新设计】高考数学 第七篇 第1讲 不等关系与不等式限时训练 新人教A版
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/6
2
/6
剩余4页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
第七篇不等式第1讲不等关系与不等式A级 基础演练(时间:30分钟 满分:55分)一、选择题(每小题5分,共20分)1.(2022·浙江)若a,b为实数,则“0<ab<1”是“a<或b>”的( ).A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析 当0<ab<1时,若b>0,则有a<;若b<0,则a<0,从而有b>.故“0<ab<1”是“a<或b>”的充分条件.反之,取b=1,a=-2,则有a<或b>,但ab<0.故选A. 答案 A2.(2022·保定模拟)已知a>b,则下列不等式成立的是( ).A.a2-b2≥0B.ac>bcC.|a|>|b|D.2a>2b解析 A中,若a=-1,b=-2,则a2-b2≥0不成立;当c=0时,B不成立;当0>a>b时,C不成立;由a>b知2a>2b成立,故选D.答案 D3.(2022·晋城模拟)已知下列四个条件:①b>0>a,②0>a>b,③a>0>b,④a>b>0,能推出<成立的有( ).A.1个B.2个C.3个D.4个解析 运用倒数性质,由a>b,ab>0可得<,②、④正确.又正数大于负数,①正确,③错误,故选C.答案 C6\n4.如果a,b,c满足c<b<a,且ac<0,那么下列选项中不一定成立的是( ).A.ab>acB.c(b-a)>0C.cb2<ab2D.ac(a-c)<0解析 由题意知c<0,a>0,则A一定正确;B一定正确;D一定正确;当b=0时C不正确.答案 C二、填空题(每小题5分,共10分)5.若-<α<β<,则α-β的取值范围是________.解析 由-<α<,-<-β<,α<β得-π<α-β<0.答案 (-π,0)6.(2022·南昌一模)现给出三个不等式:①a2+1>2a;②a2+b2>2;③+>+.其中恒成立的不等式共有________个.解析 因为a2-2a+1=(a-1)2≥0,所以①不恒成立;对于②,a2+b2-2a+2b+3=(a-1)2+(b+1)2+1>0,所以②恒成立;对于③,因为(+)2-(+)2=2-2>0,且+>0,+>0,所以+>+,即③恒成立.答案 2三、解答题(共25分)7.(12分)设0<x<1,a>0且a≠1,比较|loga(1-x)|与|loga(1+x)|的大小.解 法一 当a>1时,由0<x<1知,loga(1-x)<0,loga(1+x)>0,∴|loga(1-x)|-|loga(1+x)|=-loga(1-x)-loga(1+x)=-loga(1-x2),∵0<1-x2<1,∴loga(1-x2)<0,从而-loga(1-x2)>0,故|loga(1-x)|>|loga(1+x)|.当0<a<1时,同样可得|loga(1-x)|>|loga(1+x)|.法二 平方作差|loga(1-x)|2-|loga(1+x)|2=[loga(1-x)]2-[loga(1+x)]2=loga(1-x2)·loga=loga(1-x2)·loga>0.∴|loga(1-x)|2>|loga(1+x)|2,6\n故|loga(1-x)|>|loga(1+x)|.法三 作商比较∵==|log(1+x)(1-x)|,∵0<x<1,∴log(1+x)(1-x)<0,故=-log(1+x)(1-x)=log(1+x)=1+log(1+x)=1+log(1+x).由0<x<1知,1+x>1及>1,∴log(1+x)>0,故>1,∴|loga(1-x)|>|loga(1+x)|.8.(13分)已知f(x)=ax2-c且-4≤f(1)≤-1,-1≤f(2)≤5,求f(3)的取值范围.解 由题意,得解得所以f(3)=9a-c=-f(1)+f(2).因为-4≤f(1)≤-1,所以≤-f(1)≤,因为-1≤f(2)≤5,所以-≤f(2)≤.两式相加,得-1≤f(3)≤20,故f(3)的取值范围是[-1,20].B级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1.(2022·上海)若a、b∈R,且ab>0,则下列不等式中,恒成立的是( ).A.a2+b2>2abB.a+b≥2C.+>D.+≥2解析 对A:当a=b=1时满足ab>0,但a2+b2=2ab,所以A错;对B、C:当a=b=-1时满足ab>0,但a+b<0,+<0,而2>0,>0,显然B、C不对;对D:当ab>0时,由均值定理+=2=2.答案 D6\n2.(2022·汉中一模)若a、b均为不等于零的实数,给出下列两个条件.条件甲:对于区间[-1,0]上的一切x值,ax+b>0恒成立;条件乙:2b-a>0,则甲是乙的( ).A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析 当x∈[-1,0]时,恒有ax+b>0成立,∴当a>0时,ax+b≥b-a>0,当a<0时,ax+b≥b>0,∴b-a>0,b>0,∴2b-a>0,∴甲⇒乙,乙推不出甲,例如:a=b,b>0时,则2b-a=b>0,但是,当x=-1时,a·(-1)+b=-b+b=-b<0,∴甲是乙的充分不必要条件.答案 A二、填空题(每小题5分,共10分)3.(2022·泉州一模)已知奇函数f(x)在区间(-∞,+∞)上是单调减函数,α,β,γ∈R,且α+β>0,β+γ>0,γ+α>0,则f(α)+f(β)+f(γ)与0的关系是________.解析 ∵f(x)在R上是奇函数,∴f(-x)=-f(x),∵α+β>0,β+γ>0,γ+α>0,∴α>-β,β>-γ,γ>-α,而f(x)在R上是单调减函数,∴f(α)<f(-β)=-f(β),f(β)<f(-γ)=-f(γ),f(γ)<f(-α)=-f(α),以上三式相加得:2[f(α)+f(β)+f(γ)]<0,即f(α)+f(β)+f(γ)<0.答案 f(α)+f(β)+f(γ)<04.(2022·南京一模)给出下列四个命题:①若a>b>0,则>;②若a>b>0,则a->b-;③若a>b>0,则>;④设a,b是互不相等的正数,则|a-b|+≥2.6\n其中正确命题的序号是________(把你认为正确命题的序号都填上).解析 ①作差可得-=,而a>b>0,则<0,此式错误.②a>b>0,则<,进而可得->-,所以可得a->b-正确.③-===<0,错误.④当a-b<0时此式不成立,错误.答案 ②三、解答题(共25分)5.(12分)(2022·安徽)(1)设x≥1,y≥1,证明x+y+≤++xy;(2)设1<a≤b≤c,证明logab+logbc+logca≤logba+logcb+logac.证明 (1)由于x≥1,y≥1,所以x+y+≤++xy⇔xy(x+y)+1≤y+x+(xy)2.将上式中的右式减左式,得[y+x+(xy)2]-[xy(x+y)+1]=[(xy)2-1]-[xy(x+y)-(x+y)]=(xy+1)(xy-1)-(x+y)(xy-1)=(xy-1)(xy-x-y+1)=(xy-1)(x-1)(y-1).既然x≥1,y≥1,所以(xy-1)(x-1)(y-1)≥0,从而所要证明的不等式成立.(2)设logab=x,logbc=y,由对数的换底公式得logca=,logba=,logcb=,logac=xy.于是,所要证明的不等式即为x+y+≤++xy其中x=logab≥1,y=logbc≥1.故由(1)可知所要证明的不等式成立.6.(13分)已知f(x)是定义在(-∞,4]上的减函数,是否存在实数m,使得f(m-sinx)≤f对定义域内的一切实数x均成立?若存在,求出实数m的取值范围;若不存在,请说明理由.思维启迪:不等式和函数的结合,往往要利用函数的单调性和函数的值域.6\n解 假设实数m存在,依题意,可得即因为sinx的最小值为-1,且-(sinx-)2的最大值为0,要满足题意,必须有解得m=-或≤m≤3.所以实数m的取值范围是∪.探究提高 不等式恒成立问题一般要利用函数的值域,m≤f(x)恒成立,只需m≤f(x)min.特别提醒:教师配赠习题、课件、视频、图片、文档等各种电子资源见《创新设计·高考总复习》光盘中内容.6
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
【创新设计】(浙江专用)2022届高考数学总复习 第7篇 第1讲 不等关系与不等式限时训练 理
【创新设计】(浙江专用)2022届高考数学总复习 第14篇 第4讲 不等式的证明及著名不等式限时训练 理
【创新设计】(浙江专用)2022届高考数学总复习 第14篇 第3讲 不等式和绝对值不等式限时训练 理
【创新设计】高考数学 第九篇 第7讲 直线与圆锥曲线的位置关系限时训练 新人教A版
【创新设计】高考数学 第九篇 第3讲 直线与圆、圆与圆的位置关系限时训练 新人教A版
【创新设计】高考数学 第九篇 第1讲 直线方程和两直线的位置关系限时训练 新人教A版
【创新设计】高考数学 第七篇 第4讲 基本不等式限时训练 新人教A版
【创新设计】高考数学 第七篇 第3讲 二元一次不等式(组)与简单的线性规划问题限时训练 新人教A版
【创新设计】高考数学 第七篇 第2讲 一元二次不等式及其解法限时训练 新人教A版
【创新设计】2022届高考数学一轮总复习 第七篇 第1讲 不等关系与不等式 理 湘教版
文档下载
收藏
所属:
高考 - 二轮专题
发布时间:2022-08-26 00:36:26
页数:6
价格:¥3
大小:43.90 KB
文章作者:U-336598
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划