首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
二轮专题
>
【创新设计】(浙江专用)2022届高考数学总复习 第6篇 第5讲 数列的综合应用限时训练 理
【创新设计】(浙江专用)2022届高考数学总复习 第6篇 第5讲 数列的综合应用限时训练 理
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/6
2
/6
剩余4页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
第5讲 数列的综合应用分层A级 基础达标演练(时间:30分钟 满分:55分)一、选择题(每小题5分,共20分)1.(2022·北京)已知{an}为等比数列.下面结论中正确的是( ). A.a1+a3≥2a2B.a+a≥2aC.若a1=a3,则a1=a2D.若a3>a1,则a4>a2解析 设公比为q,对于选项A,当a1<0,q≠1时不正确;选项C,当q=-1时不正确;选项D,当a1=1,q=-2时不正确;选项B正确,因为a+a≥2a1a3=2a.答案 B2.(2022·泉州四校联考)满足a1=1,log2an+1=log2an+1(n∈N*),它的前n项和为Sn,则满足Sn>1025的最小n值是( ).A.9B.10C.11D.12解析 因为a1=1,log2an+1=log2an+1(n∈N*),所以an+1=2an,an=2n-1,Sn=2n-1,则满足Sn>1025的最小n值是11.答案 C3.(2022·济南质检)设y=f(x)是一次函数,若f(0)=1,且f(1),f(4),f(13)成等比数列,则f(2)+f(4)+…+f(2n)等于( ).A.n(2n+3)B.n(n+4)C.2n(2n+3)D.2n(n+4)解析 由题意可设f(x)=kx+1(k≠0),则(4k+1)2=(k+1)×(13k+1),解得k=2,f(2)+f(4)+…+f(2n)=(2×2+1)+(2×4+1)+…+(2×2n+1)=2n2+3n.答案 A4.(2022·威海期中)某化工厂打算投入一条新的生产线,但需要经环保部门审批同意方可投入生产.已知该生产线连续生产n年的累计产量为f(n)=n(n+1)(2n+1)吨,但如果年产量超过150吨,将会给环境造成危害.为保护环境,环保部门应给该厂这条生产线拟定最长的生产期限是( ).A.5年B.6年C.7年D.8年6\n解析 由已知可得第n年的产量an=f(n)-f(n-1)=3n2.当n=1时也适合,据题意令an≥150⇒n≥5,即数列从第8项开始超过150,即这条生产线最多生产7年.答案 C二、填空题(每小题5分,共10分)5.(2022·安庆模拟)设关于x的不等式x2-x<2nx(n∈N*)的解集中整数的个数为an,数列{an}的前n项和为Sn,则S100的值为________.解析 由x2-x<2nx(n∈N*),得0<x<2n+1,因此知an=2n.∴S100==10100.答案 101006.(2022·南通模拟)已知a,b,c成等比数列,如果a,x,b和b,y,c都成等差数列,则+=________.解析 赋值法.如令a,b,c分别为2,4,8,可求出x==3,y==6,+=2.答案 2三、解答题(共25分)7.(12分)已知函数f(x)=log2x-logx2(0<x<1),数列{an}满足f(2an)=2n(n∈N*).(1)求数列{an}的通项公式;(2)判断数列{an}的单调性.思维启迪:(1)将an看成一个未知数,解方程即可求出an;(2)通过比较an和an+1的大小来判断数列{an}的单调性.解 (1)由已知得log22an-=2n,∴an-=2n,即a-2nan-1=0.∴an=n±.∵0<x<1,∴0<2an<1,∴an<0.∴an=n-.(2)法一 ∵an+1-an=(n+1)--(n-)=1->1-=0,∴an+1>an,∴{an}是递增数列.6\n法二 ∵==<1,又∵an<0,∴an+1>an,∴{an}是递增数列.探究提高 本题融数列、方程、函数单调性等知识为一体,结构巧妙、形式新颖,着重考查逻辑分析能力.8.(13分)某家庭计划年初向银行贷款10万元用于买房,他们选择10年期贷款,偿还贷款的方式为:分10次等额归还,每年一次,并从借后次年年初开始归还,若10年期贷款的年利率为4%,且每年利息均按复利计算(即本年的利息计入次年的本金生息),问每年应还多少元(精确到1元,其中1.0410≈1.4802)?解 按照贷款的规定,在贷款全部还清时,10万元贷款的价值与这个人还款的价值总额应该相等.我们可以考虑把所有的款项都转化到同一时间(即贷款全部付清时)去计算.在10年后(即贷款全部付清时)10万元的价值为105(1+4%)10元.设每年还款x元,则第1次偿还的x元,在贷款全部付清时的价值为x(1+4%)9;第2次偿还的x元,在贷款全部付清时的价值为x(1+4%)8;……第10次偿还的x元,在贷款全部付清时的价值为x元.则105×(1+4%)10=x(1+4%)9+x(1+4%)8+x(1+4%)7+…+x,由等比数列的求和公式,可得105×1.0410=·x.所以x≈=12330.分层B级 创新能力提升1.已知f(x)=bx+1是关于x的一次函数,b为不等于1的常数,且g(n)=设an=g(n)-g(n-1)(n∈N*),则数列{an}为( ). A.等差数列B.等比数列C.递增数列D.递减数列解析 a1=g(1)-g(0)=f[g(0)]-g(0)=b+1-1=b,当n≥2时,an=g(n)-g(n-1)=f[g(n-1)]-f[g(n-2)]=b[g(n-1)-g(n-2)]=ban-1,所以{an}是等比数列.答案 B2.(2022·福州模拟)在等差数列{an}中,满足3a4=7a7,且a1>0,Sn是数列{an}前n项的和,若Sn取得最大值,则n=( ).A.7B.86\nC.9D.10解析 设公差为d,由题设3(a1+3d)=7(a1+6d),所以d=-a1<0.解不等式an>0,即a1+(n-1)>0,所以n<,则n≤9,当n≤9时,an>0,同理可得n≥10时,an<0.故当n=9时,Sn取得最大值.答案 C3.设曲线y=xn+1(n∈N*)在点(1,1)处的切线与x轴的交点的横坐标为xn,令an=lgxn,则a1+a2+a3+…+a99的值为________.解析 由y′=(n+1)xn(x∈N*),所以在点(1,1)处的切线斜率k=n+1,故切线方程为y=(n+1)(x-1)+1,令y=0得xn=,所以a1+a2+a3+…+a99=lgx1+lgx2+…+lgx99=lg(x1·x2·…·x99)=lg××…×=lg=-2.答案 -24.(2022·沈阳四校联考)数列{an}的前n项和为Sn,若数列{an}的各项按如下规律排列:,,,,,,,,,,…,,,…,,…,有如下运算和结论:①a24=;②数列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…是等比数列;③数列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…的前n项和为Tn=;④若存在正整数k,使Sk<10,Sk+1≥10,则ak=.其中正确的结论有________.(将你认为正确的结论序号都填上)解析 依题意,将数列{an}中的项依次按分母相同的项分成一组,第n组中的数的规律是:第n组中的数共有n个,并且每个数的分母均是n+1,分子由1依次增大到n,第n组中的各数和等于=.对于①,注意到21=<24<=28,因此数列{an6\n}中的第24项应是第7组中的第3个数,即a24=,因此①正确.对于②、③,设bn为②、③中的数列的通项,则bn==,显然该数列是等差数列,而不是等比数列,其前n项和等于×=,因此②不正确,③正确.对于④,注意到数列的前6组的所有项的和等于=10,因此满足条件的ak应是第6组中的第5个数,即ak=,因此④正确.综上所述,其中正确的结论有①③④.答案 ①③④5.已知各项均不相等的等差数列{an}的前四项和为14,且a1,a3,a7恰为等比数列{bn}的前三项.(1)分别求数列{an},{bn}的前n项和Sn,Tn;(2)记数列{anbn}的前n项和为Kn,设cn=,求证:cn+1>cn(n∈N*).(1)解 设公差为d,则解得d=1或d=0(舍去),a1=2,所以an=n+1,Sn=.又a1=2,d=1,所以a3=4.所以数列{bn}的首项为b1=2,公比q==2,所以bn=2n,Tn=2n+1-2.(2)证明 因为Kn=2·21+3·22+…+(n+1)·2n,①故2Kn=2·22+3·23+…+n·2n+(n+1)·2n+1,②①-②得-Kn=2·21+22+23+…+2n-(n+1)·2n+1,∴Kn=n·2n+1,则cn==.cn+1-cn=-6\n=>0,所以cn+1>cn(n∈N*).6.(2022·安徽)设函数f(x)=+sinx的所有正的极小值点从小到大排成的数列为{xn}.(1)求数列{xn}的通项公式;(2)设{xn}的前n项和为Sn,求sinSn.解 (1)因为f′(x)=+cosx=0,cosx=-,解得x=2kπ±π(k∈Z).由xn是f(x)的第n个正极小值点知,xn=2nπ-π(n∈N*).(2)由(1)可知,Sn=2π(1+2+…+n)-nπ=n(n+1)π-,所以sinSn=sin.因为n(n+1)表示两个连续正整数的乘积,n(n+1)一定为偶数,所以sinSn=-sin.当n=3m-2(m∈N*)时,sinSn=-sin=-;当n=3m-1(m∈N*)时,sinSn=-sin=;当n=3m(m∈N*)时,sinSn=-sin2mπ=0.综上所述,sinSn=6
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
【创新设计】(浙江专用)2022届高考数学总复习 第9篇 第6讲 双曲线限时训练 理
【创新设计】(浙江专用)2022届高考数学总复习 第9篇 第5讲 椭圆限时训练 理
【创新设计】(浙江专用)2022届高考数学总复习 第6篇 第4讲 数列求和限时训练 理
【创新设计】(浙江专用)2022届高考数学总复习 第6篇 第1讲 数列的概念与简单表示法限时训练 理
【创新设计】(浙江专用)2022届高考数学总复习 第5篇 第4讲 平面向量应用举例限时训练 理
【创新设计】(浙江专用)2022届高考数学总复习 第5篇 第3讲 平面向量的数量积限时训练 理
【创新设计】(浙江专用)2022届高考数学总复习 第3篇 第3讲 导数的综合应用限时训练 理
【创新设计】(浙江专用)2022届高考数学总复习 第2篇 第9讲 函数模型及其应用限时训练 理
【创新设计】(浙江专用)2022届高考数学总复习 第2篇 第5讲 指数与指数函数限时训练 理
【创新设计】(浙江专用)2022届高考数学总复习 第13篇 第5讲 复数限时训练 理
文档下载
收藏
所属:
高考 - 二轮专题
发布时间:2022-08-26 00:32:27
页数:6
价格:¥3
大小:46.37 KB
文章作者:U-336598
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划