首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
二轮专题
>
【考前三个月】(江苏专用)2022高考数学 高考必会题型 专题2 不等式与线性规划 第5练 如何用好基本不等式
【考前三个月】(江苏专用)2022高考数学 高考必会题型 专题2 不等式与线性规划 第5练 如何用好基本不等式
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/6
2
/6
剩余4页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
第5练 如何用好基本不等式题型一 利用基本不等式求解最大值、最小值问题例1 (1)设正实数x,y,z满足x2-3xy+4y2-z=0,则当取得最小值时,x+2y-z的最大值为________.(2)函数y=的最大值为________.破题切入点 (1)利用基本不等式确定取得最小值时x,y,z之间的关系,进而可求得x+2y-z的最大值.(2)可采用换元法,将函数解析式进行变形,利用基本不等式求解最值.答案 (1)2 (2)解析 (1)==+-3≥2-3=1,当且仅当x=2y时等号成立,因此z=4y2-6y2+4y2=2y2,所以x+2y-z=4y-2y2=-2(y-1)2+2≤2.(2)令t=≥0,则x=t2+1,所以y==.当t=0,即x=1时,y=0;当t>0,即x>1时,y=,因为t+≥2=4(当且仅当t=2时取等号),所以y=≤,即y的最大值为(当t=2,即x=5时y取得最大值).题型二 利用基本不等式求最值的综合性问题例2 如图所示,在直角坐标系xOy中,点P(1,)到抛物线C:y2=2px(p>0)的准线的距离为.点M(t,1)是C上的定点,A,B是C上的两动点,且线段AB的中点Q(m,n)在直线OM上.-6-\n(1)求曲线C的方程及t的值;(2)记d=,求d的最大值.破题切入点 (1)依条件,构建关于p,t的方程;(2)建立直线AB的斜率k与线段AB中点坐标间的关系,并表示弦AB的长度,运用函数的性质或基本不等式求d的最大值.解 (1)y2=2px(p>0)的准线x=-,∴1-(-)=,p=,∴抛物线C的方程为y2=x.又点M(t,1)在曲线C上,∴t=1.(2)由(1)知,点M(1,1),从而n=m,即点Q(m,m),依题意,直线AB的斜率存在,且不为0,设直线AB的斜率为k(k≠0).且A(x1,y1),B(x2.y2),由得(y1-y2)(y1+y2)=x1-x2,故k·2m=1,所以直线AB的方程为y-m=(x-m),即x-2my+2m2-m=0.由消去x,整理得y2-2my+2m2-m=0,所以Δ=4m-4m2>0,y1+y2=2m,y1y2=2m2-m.从而|AB|=·|y1-y2|=·=2∴d==2≤m+(1-m)=1,当且仅当m=1-m,即m=时,上式等号成立.又m=满足Δ=4m-4m2>0,∴d的最大值为1.总结提高 (1)利用基本不等式求函数或代数式的最大值、最小值时,注意观察其是否具有“和为定值”或“积为定值”的结构特点.在具体题目中,一般很少直接考查基本不等式的应用,而是需要将式子进行变形,寻求其中的内在关系,然后利用基本不等式求出最值.-6-\n(2)应用基本不等式解题一定要注意应用的前提:“一正”“二定”“三相等”,所谓“一正”是指正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件.若连续使用基本不等式求最值,必须保证两次等号成立的条件一致,否则最值就取不到.1.小王从甲地到乙地往返的时速分别为a和b(a<b),其全程的平均时速为v,则a,,v的大小关系为________.答案 a<v<解析 设甲、乙两地之间的距离为s.∵a<b,∴v===<=.又v-a=-a=>=0,∴v>a.2.若函数f(x)=x+(x>2)在x=a处取最小值,则a=________.答案 3解析 ∵x>2,∴f(x)=x+=x-2++2≥2+2=4,当且仅当x-2=,即x=3时等号成立,即a=3,f(x)min=4.3.(2022·南通模拟)设a>0,b>0,若是3a与3b的等比中项,则+的最小值为________.答案 4解析 因为3a·3b=3,所以a+b=1.+=(a+b)=2++≥2+2=4,当且仅当=,即a=b=时等号成立.4.已知m=a+(a>2),n=x-2(x≥),则m与n之间的大小关系为________.答案 m≥n解析 m=a+=(a-2)++2≥4(a>2),当且仅当a=3时,等号成立.由x≥得x2≥,-6-\n∴n=x-2=≤4即n∈(0,4],∴m≥n.5.已知正数x,y满足x+2≤λ(x+y)恒成立,则实数λ的最小值为________.答案 2解析 ∵x>0,y>0,∴x+2y≥2(当且仅当x=2y时取等号).又由x+2≤λ(x+y)可得λ≥,而≤=2,∴当且仅当x=2y时,max=2.∴λ的最小值为2.6.已知a>0,b>0,若不等式--≤0恒成立,则m的最大值为________.答案 16解析 因为a>0,b>0,所以由--≤0恒成立得m≤(+)(3a+b)=10++恒成立.因为+≥2=6,当且仅当a=b时等号成立,所以10++≥16,所以m≤16,即m的最大值为16.7.若正实数x,y满足2x+y+6=xy,则xy的最小值是________.答案 18解析 ∵x>0,y>0,2x+y+6=xy,∴2+6≤xy,即xy-2-6≥0,解得xy≥18.∴xy的最小值是18.8.已知a>0,b>0,函数f(x)=x2+(ab-a-4b)x+ab是偶函数,则f(x)的图象与y轴交点纵坐标的最小值为________.答案 16解析 根据函数f(x)是偶函数可得ab-a-4b=0,函数f(x)的图象与y轴交点的纵坐标为ab.由ab-a-4b=0,得ab=a+4b≥4,解得ab≥16(当且仅当a=8,b=2时等号成立),即f(x)的图象与y轴交点纵坐标的最小值为16.9.若对任意x>0,≤a恒成立,则a的取值范围是________.答案 解析 ∵a≥=对任意x>0恒成立,设u=x++3,∴只需a≥-6-\n恒成立即可.∵x>0,∴u≥5(当且仅当x=1时取等号).由u≥5知0<≤,∴a≥.10.(1)已知0<x<,求y=2x-5x2的最大值;(2)求函数y=(x>-1)的最小值.解 (1)y=2x-5x2=x(2-5x)=·5x·(2-5x).∵0<x<,∴5x<2,2-5x>0,∴5x(2-5x)≤()2=1,∴y≤,当且仅当5x=2-5x,即x=时,ymax=.(2)设x+1=t,则x=t-1(t>0),∴y==t++5≥2+5=9.当且仅当t=,即t=2,且此时x=1时,取等号,∴ymin=9.11.如图,建立平面直角坐标系xOy,x轴在地平面上,y轴垂直于地平面,单位长度为1千米,某炮位于坐标原点.已知炮弹发射后的轨迹在方程y=kx-(1+k2)x2(k>0)表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由.解 (1)令y=0,得kx-(1+k2)x2=0,由实际意义和题设条件知x>0,又k>0,故x==≤=10,当且仅当k=1时取等号.所以炮的最大射程为10千米.(2)因为a>0,所以炮弹可击中目标⇔存在k>0,-6-\n使3.2=ka-(1+k2)a2成立⇔关于k的方程a2k2-20ak+a2+64=0有正根⇔判别式Δ=(-20a)2-4a2(a2+64)≥0⇔0<a≤6.所以当a不超过6千米时,可击中目标.12.为了响应国家号召,某地决定分批建设保障性住房供给社会.首批计划用100万元购得一块土地,该土地可以建造每层1000平方米的楼房,楼房的每平方米建筑费用与建筑高度有关,楼房每升高一层,整层楼每平方米建筑费用提高20元.已知建筑第5层楼房时,每平方米建筑费用为800元.(1)若建筑第x层楼时,该楼房综合费用为y万元(综合费用是建筑费用与购地费用之和),写出y=f(x)的表达式;(2)为了使该楼房每平方米的平均综合费用最低,应把楼层建成几层?此时平均综合费用为每平方米多少元?解 (1)由题意知建筑第1层楼房每平方米建筑费用为720元,建筑第1层楼房建筑费用为720×1000=720000(元)=72(万元),楼房每升高一层,整层楼建筑费用提高20×1000=20000(元)=2(万元),建筑第x层楼时,该楼房综合费用为y=f(x)=72x+×2+100=x2+71x+100,综上可知y=f(x)=x2+71x+100(x≥1,x∈Z).(2)设该楼房每平方米的平均综合费用为g(x),则g(x)====10x++710≥2+710=910.当且仅当10x=,即x=10时等号成立.综上,可知应把楼层建成10层,此时平均综合费用最低,为每平方米910元.-6-
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
全国通用2022版高考数学考前三个月复习冲刺专题2第4练用好基本不等式理
【考前三个月】(江苏专用)2022高考数学 高考必会题型 专题三 函数与导数 第17练 归纳与类比推理
【考前三个月】(江苏专用)2022高考数学 高考必会题型 专题三 函数与导数 第17练 存在与恒成立问题
【考前三个月】(江苏专用)2022高考数学 高考必会题型 专题三 函数与导数 第14练 导数与单调性
【考前三个月】(江苏专用)2022高考数学 高考必会题型 专题三 函数与导数 第13练 高考对于导数几何意义的必会题型
【考前三个月】(江苏专用)2022高考数学 高考必会题型 专题5 数列 第25练 数列求和问题大全
【考前三个月】(江苏专用)2022高考数学 高考必会题型 专题5 数列 第23练 基本量 破解等差、等比数列的法宝
【考前三个月】(江苏专用)2022高考数学 高考必会题型 专题2 不等式与线性规划 第7练 基本初等函数问题
【考前三个月】(江苏专用)2022高考数学 高考必会题型 专题2 不等式与线性规划 第6练 处理好“线性规划问题”的规划
【考前三个月】(江苏专用)2022高考数学 高考必会题型 专题2 不等式与线性规划 第4练 再谈“三个二次”的转化策略
文档下载
收藏
所属:
高考 - 二轮专题
发布时间:2022-08-26 00:16:21
页数:6
价格:¥3
大小:82.41 KB
文章作者:U-336598
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划