首页

【考前三个月】(江苏专用)2022高考数学 高考必会题型 专题三 函数与导数 第8练 函数性质在运用中的巧思妙解

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/6

2/6

剩余4页未读,查看更多内容需下载

第8练 函数性质在运用中的巧思妙解题型一 直接考查函数的性质例1 “a≤0”是“函数f(x)=|(ax-1)x|在区间(0,+∞)内单调递增”的________条件.破题切入点 首先找出f(x)在(0,+∞)递增的等价条件,然后从集合的观点来研究充要条件.答案 充要解析 当a=0时,f(x)=|(ax-1)x|=|x|在区间(0,+∞)上单调递增;当a<0时,结合函数f(x)=|(ax-1)x|=|ax2-x|的图象知函数在(0,+∞)上单调递增,如图(1)所示;当a>0时,结合函数f(x)=|(ax-1)x|=|ax2-x|的图象知函数在(0,+∞)上先增后减再增,不符合条件,如图(2)所示.所以,要使函数f(x)=|(ax-1)x|在(0,+∞)上单调递增只需a≤0.即“a≤0”是“函数f(x)=|(ax-1)x|在区间(0,+∞)内单调递增”的充要条件.题型二 函数性质与其他知识结合考查例2 函数y=f(x)的图象如图所示,在区间[a,b]上可找到n(n≥2)个不同的数x1,x2,…,xn,使得==…=,则n的取值范围为________.破题切入点 从已知的比值相等这一数量关系出发,找图象上的表示形式,再找与原函数图象的关系,进一步判断出结果.答案 {2,3,4}解析 过原点作直线与函数y=f(x)的图象可以有两个、三个、四个不同的交点,因此n的取值范围是{2,3,4}.题型三 对函数性质的综合考查例3 已知函数f(x)=x2+alnx.(1)当a=-2时,求函数f(x)的单调递减区间;(2)若函数g(x)=f(x)+在[1,+∞)上单调,求实数a的取值范围.破题切入点 (1)直接根据f′(x)<0确定单调递减区间.(2)g(x)在[1,+∞)上单调,则g′(x)≥0或g′(x)≤0在[1,+∞)上恒成立.解 (1)由题意知,函数的定义域为(0,+∞),-6-\n当a=-2时,f′(x)=2x-=,故f(x)的单调递减区间是(0,1).(2)由题意得g′(x)=2x+-,函数g(x)在[1,+∞)上是单调函数.①若g(x)为[1,+∞)上的单调增函数,则g′(x)≥0在[1,+∞)上恒成立,即a≥-2x2在[1,+∞)上恒成立,设φ(x)=-2x2,∵φ(x)在[1,+∞)上单调递减,∴φ(x)max=φ(1)=0,∴a≥0.②若g(x)为[1,+∞)上的单调减函数,则g′(x)≤0在[1,+∞)上恒成立,不可能.∴实数a的取值范围为[0,+∞).总结提高 (1)函数单调性的等价结论:设x1、x2∈[a,b]则(x1-x2)[f(x1)-f(x2)]>0⇔>0⇔f(x)在[a,b]上递增.(x1-x2)[f(x1)-f(x2)]<0⇔<0⇔f(x)在[a,b]上递减.(2)判断单调性时还可根据四则运算法则:若f(x)和g(x)都是增函数,则f(x)+g(x)也是增函数,-f(x)是减函数,复合函数单调性根据内函数和外函数同增异减的法则.(3)求函数的单调性问题还可以求导.(4)函数奇偶性的前提是定义域关于原点对称.(5)任何一个函数都可以写成一个奇函数加上一个偶函数.如f(x)=+,为偶函数,而为奇函数.(6)求函数的单调性要注意先研究定义域.1.已知函数f(x)为奇函数,且当x≥0时,f(x)=-a,则f(log3)=________.答案 解析 由题意,可知函数f(x)为奇函数,所以f(0)=-a=0,解得a=,所以当x≥0时,f(x)=-.所以f(log32)=--6-\n=-=-.从而f(log3)=f(-log32)=-f(log32)=.2.定义在R上的函数f(x)满足f(x+6)=f(x),当-3≤x<-1时,f(x)=-(x+2)2;当-1≤x<3时,f(x)=x.则f(1)+f(2)+f(3)+…+f(2013)=________.答案 337解析 ∵f(x+6)=f(x),∴T=6.∵当-3≤x<-1时,f(x)=-(x+2)2,当-1≤x<3时,f(x)=x,∴f(1)=1,f(2)=2,f(3)=f(-3)=-1,f(4)=f(-2)=0,f(5)=f(-1)=-1,f(6)=f(0)=0,∴f(1)+f(2)+…+f(6)=1,∴f(1)+f(2)+…+f(6)=f(7)+f(8)+…+f(12)=…=f(2005)+f(2006)+…+f(2010)=1,∴f(1)+f(2)+…+f(2010)=1×=335.而f(2011)+f(2012)+f(2013)=f(1)+f(2)+f(3)=2,∴f(1)+f(2)+…+f(2013)=335+2=337.3.设f(x)是定义在R上的奇函数,且当x≥0时,f(x)=x2,若对任意的x∈[-2-,2+],不等式f(x+t)≤2f(x)恒成立,则实数t的取值范围是________.答案 (-∞,-]解析 设x<0,则-x>0.f(-x)=(-x)2,又∵f(x)是奇函数,∴f(x)=-x2.∴f(x)在R上为增函数,且2f(x)=f(x).∴f(x+t)≤2f(x)=f(x)⇔x+t≤x在[-2-,2+]上恒成立,∵x+t≤x⇔(-1)x≥t,要使原不等式恒成立,只需(-1)(-2-)≥t⇒t≤-即可.4.(2022·天津改编)已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增.若实数a满足f(log2a)+f(loga)≤2f(1),则a的取值范围是________.答案 解析 由题意知a>0,又loga=log2a-1=-log2a.∵f(x)是R上的偶函数,∴f(log2a)=f(-log2a)=f(loga),-6-\n∵f(log2a)+f(loga)≤2f(1),∴2f(log2a)≤2f(1),即f(log2a)≤f(1).又∵f(x)在[0,+∞)上递增,∴|log2a|≤1,-1≤log2a≤1,∴a∈.5.函数y=f(x-1)的图象关于直线x=1对称,当x∈(-∞,0)时,f(x)+xf′(x)<0成立,若a=20.2·f(20.2),b=ln2·f(ln2),c=(log)·f(log),则a,b,c的大小关系是________.答案 b>a>c解析 因为函数y=f(x-1)的图象关于直线x=1对称,所以y=f(x)关于y轴对称.所以函数y=xf(x)为奇函数.因为[xf(x)]′=f(x)+xf′(x),所以当x∈(-∞,0)时,[xf(x)]′=f(x)+xf′(x)<0,函数y=xf(x)单调递减,从而当x∈(0,+∞)时,函数y=xf(x)单调递减.因为1<20.2<2,0<ln2<1,log=2,从而0<ln2<20.2<log,所以b>a>c.6.已知定义在R上的函数y=f(x)满足以下三个条件:①对于任意的x∈R,都有f(x+4)=f(x);②对于任意的x1,x2∈R,且0≤x1<x2≤2,都有f(x1)<f(x2);③函数y=f(x+2)的图象关于y轴对称.则f(4.5),f(6.5),f(7)的大小关系是______________.答案 f(4.5)<f(7)<f(6.5)解析 由已知得f(x)是以4为周期且关于直线x=2对称的函数.所以f(4.5)=f(4+)=f(),f(7)=f(4+3)=f(3),f(6.5)=f(4+)=f().又f(x)在[0,2]上为增函数.所以作出其在[0,4]上的图象知-6-\nf(4.5)<f(7)<f(6.5).7.已知函数f(x)是R上的偶函数,若对于x≥0,都有f(x+2)=-f(x),且当x∈[0,2)时,f(x)=log8(x+1),则f(-2013)+f(2014)的值为________.答案 解析 当x≥0时,有f(x+2)=-f(x),故f(x+4)=f((x+2)+2)=-f(x+2)=f(x).由函数f(x)在R上为偶函数,可得f(-2013)=f(2013),故f(2013)=f(4×503+1)=f(1),f(2014)=f(4×503+2)=f(2).而f(1)=log8(1+1)=log82=,f(2)=f(0+2)=-f(0)=-log81=0.所以f(-2013)+f(2014)=.8.对于任意实数a,b,定义min{a,b}=设函数f(x)=-x+3,g(x)=log2x,则函数h(x)=min{f(x),g(x)}的最大值是________.答案 1解析 依题意,h(x)=当0<x≤2时,h(x)=log2x是增函数;当x>2时,h(x)=3-x是减函数,∴h(x)在x=2时,取得最大值h(2)=1.9.(2022·江苏)已知f(x)是定义在R上的奇函数.当x>0时,f(x)=x2-4x,则不等式f(x)>x的解集用区间表示为________________.答案 (-5,0)∪(5,+∞)解析 由已知得f(0)=0,当x<0时,f(x)=-f(-x)=-x2-4x,因此f(x)=不等式f(x)>x等价于或,解得:x>5或-5<x<0.10.已知函数y=f(x),x∈R,有下列4个命题:①若f(1+2x)=f(1-2x),则f(x)的图象关于直线x=1对称;②y=f(x-2)与y=f(2-x)的图象关于直线x=2对称;③若f(x)为偶函数,且f(2+x)=-f(x),则f(x)的图象关于直线x=2对称;④若f(x)为奇函数,且f(x)=f(-x-2),则f(x)的图象关于直线x=1对称.其中正确命题的序号为________.答案 ①②④解析 =1,故函数y=f(x)的图象关于直线x=1对称,故①正确;对于②,令t=x-2,则问题等价于y=f(t)与y=f(-t)图象的对称问题,显然这两个函数的图象关于直线t=0对称,即函数y=f(x-2)与y=f(2-x)的图象关于直线x-2=0即x=2对称,故②正确;由f(x+2)=-f(x),可得f(x+4)=-f(x+2)=f(x),我们只能得到函数的周期为4,即只能推得函数y=f(x)的图象关于直线x=4k(k∈Z)对称,不能推得函数y=f(x)的图象关于直线x=2对称,故③错误;由于函数f(x)为奇函数,由f(x)=f(-x-2),可得f(-x)=f(x+2),由于-6-\n=1,可得函数y=f(x)的图象关于直线x=1对称,故④正确.11.设函数f(x)对任意的a,b∈R,都有f(a+b)=f(a)+f(b)-1,且当x>0时,f(x)>1.(1)求证:f(x)是R上的增函数;(2)若f(4)=5,解不等式f(3m2-m-2)<3.(1)证明 方法一 设x1<x2,∴Δx=x2-x1>0,∴f(Δx)>1,∴f(x2)=f(x1+Δx)=f(x1)+f(Δx)-1>f(x1),∴f(x)是R上的增函数.方法二 ∵f(0+0)=f(0)+f(0)-1,∴f(0)=1,∴f(0)=f(x-x)=f(x)+f(-x)-1=1,∴f(-x)=2-f(x).设x1<x2,∴x2-x1>0,∴f(x2-x1)=f(x2)+f(-x1)-1=f(x2)+2-f(x1)-1=f(x2)-f(x1)+1>1,∴f(x2)-f(x1)>0,∴f(x2)>f(x1),∴f(x)是R上的增函数.(2)解 f(4)=f(2)+f(2)-1=5,∴f(2)=3,∴f(3m2-m-2)<3=f(2).又由(1)的结论知f(x)是R上的增函数,∴3m2-m-2<2,∴-1<m<.12.已知函数f(x)=a·2x+b·3x,其中常数a,b满足ab≠0.(1)若ab>0,判断函数f(x)的单调性;(2)若ab<0,求f(x+1)>f(x)时x的取值范围.解 (1)当a>0,b>0时,任意x1,x2∈R,x1<x2,则f(x1)-f(x2)=a(2-2)+b(3-3).∵2<2,a>0⇒a(2-2)<0,3<3,b>0⇒b(3-3)<0,∴f(x1)-f(x2)<0,函数f(x)在R上是增函数.当a<0,b<0时,同理,函数f(x)在R上是减函数.(2)f(x+1)-f(x)=a·2x+2b·3x>0,当a<0,b>0时,x>-,则x>log1.5;当a>0,b<0时,x<-,则x<log1.5.故a<0,b>0时,x∈(log1.5(-),+∞);a>0,b<0时,x∈(-∞,log1.5(-)).-6-

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-26 00:16:09 页数:6
价格:¥3 大小:95.68 KB
文章作者:U-336598

推荐特供

MORE